Who Am I?

Ver Pangonilo, PEE RPEQ

Email:

Ver Pangonilo

We provide safe, reliable and sustainable Energy Solutions

Summary of Qualifications

Professional Registrations
Philippines: Professional Electrical Engineer (First Placer – April 1991)
Australia: Registered Professional Engineer of Queensland (RPEQ)
Professional Memberships
— Institute of Integrated Electrical Engineers (Philippines) – Life Member No. 23633
— IEEE Member No. 90438137 - IEEE Power & Energy Society
Education
B.Sc (Eng) Electrical, 1983 - Saint Louis University
Baguio City, Philippines
Specialist Courses
— Hazardous Area Classification Certificate No. CT04248 (Australia)
UEENEEM015B Classify hazardous areas
UEENEEM016B Design electrical installations in hazardous areas
UEENEEM017B Design explosion-protected electrical system
In partial completion of UEE61207 - Advanced Diploma of Engineering - Explosion protection
Training and Seminnars
— ISO 9001:2015 - Understanding and Requirements Implementation
— Effective Risk Management
— Task Risk Assessment

Read more...

Core Competencies

Concept definition, front-end engineering (FEED) and detail design engineering
— Equipment specification, selection, procurement, installation and commissioning
— Power distribution, earthing, lighting and lightning protection design
Procurement, project management and construction management
— Purchase requisitions and technical bid evaluations
Power System Design
— Power system modelling(ETAP, SKM Power Tools, PowerCad)
— Electric Power Distribution for Industrial and Commercial Facilities
— Short-ciruit Calculation and Protection Coordination
— Calculations for equipment selection
— Earthing (grounding) and lightning protection
— Lighting design
— Semiconductor and Clean Room Facilities
— UPS and Emergency Genecators
Commissioning, maintenance, estimating and construction
— Capital Expenditure (CAPEX) estimating
Hazardous area design and installation
— Upstream and downstream oil & gas facilities, refineries and process plants
— Offshore platforms, floating production storage and offloading (FPSO)
— LNG pipelines, bulk water transmission pipeline
— Tunnel/underground facilities installations
Water pumping stations, water treatment & sewage plants

Latest Blog

A Definitive Guide to Earthing and Bonding in Hazardous Areas

1. Introduction This document outlines acceptable practices for earthing and bonding electrical apparatus in hazardous areas. While the topic is straightforward, it spans multiple areas of electrical expertise, making a systematic approach beneficial. Numerous codes of practice specify methods for earthing and bonding; however, the fundamental requirements remain consistent regardless of geographic location. Consequently, significant variations in requirements should not...

Photovoltaic Microinverters – Applications, Advantages and Disadvantages

Introduction Photovoltaic (PV) microinverters are compact power conversion devices used in solar energy systems to convert direct current (DC) from individual solar panels into alternating current (AC) for use in residential, commercial, and industrial applications. Unlike traditional string inverters that handle multiple panels, microinverters are installed on each solar panel, offering several unique benefits and challenges. This document explores the...

Case Study: Shading Effect on the Performance of a Photovoltaic (PV) System

1. Introduction Shading is one of the primary factors that negatively affect the performance of photovoltaic (PV) systems. Even partial shading can significantly reduce energy output and lead to permanent damage to the system. This case study analyzes the impact of shading on a PV system using various shading scenarios, their corresponding power losses, and mitigation strategies to improve...

Shading Effect on the Performance of a Photovoltaic (PV) Panel

Shading is one of the most critical factors that negatively impact the performance of a photovoltaic panel. Even a small amount of shading can significantly reduce the energy output and efficiency of a solar panel. Below, we explore the effects of shading on PV panels in detail. 1. How Shading Affects PV Panels A photovoltaic panel is composed of multiple solar...

Mitigation Strategies for Power Supply Disturbances in Electrical Networks

Power supply disturbances can cause significant problems in electrical networks, leading to equipment failure, data loss, and reduced lifespan of devices. Below are the main sources of power supply disturbances and effective strategies to mitigate them. 1. Internal Sources of Disturbance These disturbances originate within the electrical network. A. Switching Operations Problem: Switching transformers, capacitors, or circuit breakers can cause transient surges and...
Learn the basics

Tutorials

MVA Method

At this times where supercomputers could fit into a mobile phone and utility softwares are always available to do particular tasks, most Electrical Engineers tend to forget how to implement …

Read more...

Short Circuit Study
What is a Short Circuit Study? A short circuit study calculates the short circuit capacity at designated locations within a...
MVA Method Short Circuit Calculation
A Short Circuit Study is an important tool in determining the ratings of electrical equipment to be installed...
MVA Method Load Flow Calculation
In previous tutorials for the MVA method, we have discussed the importance of Short Circuit Study, combining KVAs and...
MVA Method for 3-Winding Transformer
In previous tutorials, the examples provided were mostly for 2-winding transformers. In this tutorial, fault calculations for a 3-winding...
Complex MVA Method – Part 3
In Part 2, we have seen how to combine MVAs connected...
Complex MVA Method
The normal MVA method, despite its simplicity, provides only an approximate solution to determine the fault levels in a...
Complex MVA Method – Part 2
After presenting the equations that we will be using for the Complex MVA Method in Complex MVA Method – Part 4
In Part 1, Part 2, and Part...
Combining KVAs
KVAs in series. The total KVAs in series (KVAtotal) is the reciprocal sum or inverse sum of all series...

Cable Selection

Cable Selection – Single Phase Earth Conductor Sizes Fault Loop Impedance High Voltage Cable Selection – Underground Cables Selection for Motors

Read more...

Cable Selection – Single Phase
Note: This will be the first of a series of tutorials for the selection of cables. The objective of this...
Fault Loop Impedance
Note: This is the second part of a series of tutorials for cable selection. We have done cable selection based...
Cables Selection for Motors
When selecting a suitable cable size for a motor, there are more parameters to consider than when selecting cables...
High Voltage Underground Cable Selection
Unlike the other Cable Selection tutorials which deals with low voltage (LV) cables,...
Earthing Conductor Sizes
The following table lists the recommended minimum sizes of earthing conductors. Note: This serves only as a guide, calculations are...
Arc Flash Hazards
It's not too long ago that arc flash hazards has become an important part of electrical design. More clients...
IEEE 1584 Arc Flash Calculations
IEEE 1584 provides empirical formulas for determining arcing fault current, flash protection boundaries, and incident energy. The formulas are...
Time-Current Curves Using Excel – Part 1
In these articles, I have discussed the methodology on how to create time-current curves using excel.
  1. Creating Coordination Curves...
Time-Current Curves
Discrimination & coordination using Time-Current Curves
  1. TC Curves Part 1 - Introduction
  2. Time-Current Curve Part 2 – Discrimination
    In Part 1, I have discussed the basics of using excel in plotting time-current curves. In...
Back to basics

Downloads