Latest Blog

Sponsors

Electrical Protection Fundamentals

There are different protection techniques and principles. Fuses are the simplest and cheapest technology. After operation, however, fuses are required to be manually replaced to restore protection features. Protection relays are applied if fuses are not feasible. There are different protection relays, require different inputs, and process the information differently, but the main objective of all protection relays is...

High Voltage Arc Flash Assessment and Applications Part 2

Part 1 of this article, which was the cover story in the previous issue of NETA World, explored the need for high-voltage arc flash (HVAF) assessment to protect utility workers who are exposed to voltages above 15kV.It also compared various methods to calculate the incident energy from HV and MV electric arcs. Analyzing the results demonstrated that several...

High Voltage Arc Flash Assessment and Applications

Arc flash assessment based on IEEE 1584 has limitations with respect to the voltage. The voltage range applicable to IEEE 1584-2018 remains unchanged at 208V through 15kV. Low voltage range is now 208V through 600V. Protecting utility workers and other working personnel who are exposed to line-to-line voltages above 15kV at live electricity installations is critical. For this reason and...

Heat Dissipation in Sealed Electrical Enclosures

Heat dissipation in sealed electrical enclosures is a critical consideration in the design and operation of electrical or electronic systems. Effective heat management ensures the reliability, performance, and longevity of the components inside the enclosure.

Key aspects and methods to consider

1. Heat Generation
Electronic components generate heat during operation. The amount of heat depends on the power consumption and efficiency...

Protection Coordination in Electrical Substation – A Case Study

Protection coordination is the heart of all power systems. To ensure a quality and reliable operation of the power systems, an electrical fault must be cleared within a short time. This can be achieved by proper coordination between the protection relays. This paper is principally concerned with practical protection coordination of the electrical substation. This is a case study...
Learn the basics

Tutorials

MVA Method

At this times where supercomputers could fit into a mobile phone and utility softwares are always available to do particular tasks, most Electrical Engineers tend to forget how to implement …

Read more...

Short Circuit Study
What is a Short Circuit Study? A short circuit study calculates the short circuit capacity at designated locations within a...
MVA Method Short Circuit Calculation
A Short Circuit Study is an important tool in determining the ratings of electrical equipment to be installed...
MVA Method Load Flow Calculation
In previous tutorials for the MVA method, we have discussed the importance of Short Circuit Study, combining KVAs and...
MVA Method for 3-Winding Transformer
In previous tutorials, the examples provided were mostly for 2-winding transformers. In this tutorial, fault calculations for a 3-winding...
Complex MVA Method – Part 3
In Part 2, we have seen how to combine MVAs connected...
Complex MVA Method
The normal MVA method, despite its simplicity, provides only an approximate solution to determine the fault levels in a...
Complex MVA Method – Part 2
After presenting the equations that we will be using for the Complex MVA Method in Complex MVA Method – Part 4
In Part 1, Part 2, and Part...
Combining KVAs
KVAs in series. The total KVAs in series (KVAtotal) is the reciprocal sum or inverse sum of all series...

Cable Selection

Cable Selection – Single Phase Earth Conductor Sizes Fault Loop Impedance High Voltage Cable Selection – Underground Cables Selection for Motors

Read more...

Cable Selection – Single Phase
Note: This will be the first of a series of tutorials for the selection of cables. The objective of this...
Fault Loop Impedance
Note: This is the second part of a series of tutorials for cable selection. We have done cable selection based...
Cables Selection for Motors
When selecting a suitable cable size for a motor, there are more parameters to consider than when selecting cables...
High Voltage Underground Cable Selection
Unlike the other Cable Selection tutorials which deals with low voltage (LV) cables,...
Earthing Conductor Sizes
The following table lists the recommended minimum sizes of earthing conductors. Note: This serves only as a guide, calculations are...
Arc Flash Hazards
It's not too long ago that arc flash hazards has become an important part of electrical design. More clients...
IEEE 1584 Arc Flash Calculations
IEEE 1584 provides empirical formulas for determining arcing fault current, flash protection boundaries, and incident energy. The formulas are...
Time-Current Curves Using Excel – Part 1
In these articles, I have discussed the methodology on how to create time-current curves using excel.
  1. Creating Coordination Curves...
Time-Current Curves
Discrimination & coordination using Time-Current Curves
  1. TC Curves Part 1 - Introduction
  2. Time-Current Curve Part 2 – Discrimination
    In Part 1, I have discussed the basics of using excel in plotting time-current curves. In...
Back to basics

Downloads