Per-Unit Method Short Circuit Calculation

I. Introduction

In a previous post, the Impedance Method of Short-Circuit Calculation has been presented. To provide a comparative analysis on the accuracy of each calculation, the example provided in the impedance method will be used in this article.

Per unit value of any quantity is defined as the ratio of actual value to the chosen base value in the same unit.

per~unit~value~=~{actual~value~any~unit}/{base~value~same~unit}

Per Unit Impedance

Z_{pu}~=~{Z}/{Z_b}~=~Z~*~{{MVA_b}/{{kV_b}^2}}~~~~~{right}~eq.1

where:
Z~=~actual~impedance,~{Omega}
Z_{pu}~=~per~unit~impedance
Z_b~=~base~impedance
MVA_b~=~base~MVA
kV_b~=~base~kV~(line-to-line)

Change of Base

The impedances are usually specified on the rating of the equipment. These impedances need to be changed into PU values from the base of the equipment rating (old value) to that of the chosen system base (new value).

Z_{pu}_{new}~=~Z_{pu}_{old}~*~{{MVA_b_new}/{{kV_b}^2}_new}~*~{{{{kV_b}^2}_old}/{MVA_b_old}}~~~~~{right}~eq.2

X_{pu}_{new}~=~X_{pu}_{old}~*~{{MVA_b_new}/{{kV_b}^2}_new}~*~{{{{kV_b}^2}_old}/{MVA_b_old}}~~~~~{right}~eq.3

II. Example Calculation

Figure 1 Impedance Method Example
Figure 1 Per-Unit Method Example

From Figure 1, given the parameters below, calculate the 3-phase fault and X/R ratio at Fault 1, Fault 2 and Fault 3:

  1. Utility
    Available Fault = 436 MVA
    X/R = 15
  2. Cable 1
    Length = 1300 m
    Unit Resistance = 0.39 ohms/km
    Unit Reactance = 0.039 ohms/km
    Number of parallel conductors / phase = 1
  3. Transformer
    Primary Voltage = 13.8 kV
    Secondary Voltage = 0.48 kV
    Capacity = 2 MVA
    %Z = 5.75%
    X/R = 5.662
  4. Cable 2
    Length = 500 m
    Unit Resistance = 0.048 ohms/km
    Unit Reactance = 0.029 ohms/km
    Number of parallel conductors / phase = 2

Conversion of Actual Values to Per Unit

Choosing some arbitrary base values

At 13.8kV (Transformer Primary Side):
MVAb = 2MVA
kVb = 13.8kV
At 0.48kV (Transformer Secondary Side):
MVAb = 2MVA
kVb = 0.48kV

From the above selected base values, the PU equivalent of actual values will be:

  1. Utility
    Available Fault = 436 MVA
    X/R = 15

    PU values
    Zpu1 = 0.004587156 pu
    Rpu1 = 0.000305133 pu
    Xpu1 = 0.004576996 pu
  2. Cable 1
    Length = 1300 m
    Unit Resistance = 0.39 ohms/km
    Unit Reactance = 0.039 ohms/km
    Number of parallel conductors / phase = 1

    PU values
    Zpu2 = 0.005351068 pu
    Rpu2 = 0.005324512 pu
    Xpu2 = 0.000532451 pu
  3. Transformer
    Primary Voltage = 13.8 kV
    Secondary Voltage = 0.48 kV
    Capacity = 2 MVA
    %Z = 5.75%
    X/R = 5.662

    PU values
    Zpu3 = 0.0575 pu
    Rpu3 = 0.010000644 pu
    Xpu3 = 0.056623645 pu
  4. Cable 2
    Length = 500 m
    Unit Resistance = 0.048 ohms/km
    Unit Reactance = 0.029 ohms/km
    Number of parallel conductors / phase = 2

    PU values
    Zpu4 = 0.121702039 pu
    Rpu4 = 0.104166667 pu
    Xpu4 = 0.062934028 pu

    Please note that the base kV for this cable is 0.48kV

III. Fault Calculations

From the above calculated PU values, it is now possible to calculate the short-circuit currents at the different fault locations.

Fault 1 (13.8kV)

R_{pu}~=~R1_{pu}~+~R2_{pu}
R_{pu}~=~0.000305133~+~0.005324512
R_{pu}~=~0.005629645

X_{pu}~=~X1_{pu}~+~X2_{pu}
X_{pu}~=~0.004576996~+~0.000532451
X_{pu}~=~0.005109447

Z_{pu}~=~R_pu~+~jX_pu
Z_{pu}~=~0.005629645~+~j0.005109447
Z_{pu}~=~0.007602588{lt}{42.2}^{o}

From eq. 1
{Z}~=~0.007602588~*~{{13.8^2}/{2}}
{Z}~=~0.723918475~{Omega}

Calculating the current at Fault1 @ 13.8kV:
I_{fault1}~=~{1000*kV}/{sqrt{3}*Z}
I_{fault1}~=~{1000*13.8}/{sqrt{3}*0.723918475}

I_{fault1}~=~11,005.98202~A

{X/R}~=~tan(42.2^o)~=~0.91

Fault 2 (0.48kV)

R_{pu}~=~R1_{pu}~+~R2_{pu}~+~R3_{pu}
R_{pu}~=~0.000305133~+~0.005324512~+~0.010000644
R_{pu}~=~0.015630288

X_{pu}~=~X1_{pu}~+~X2_{pu}~+~X3_{pu}
X_{pu}~=~0.004576996~+~0.000532451~+~0.056623645
X_{pu}~=~0.063681085

Z_{pu}~=~R_pu~+~jX_pu
Z_{pu}~=~0.015630288~+~j0.063681085
Z_{pu}~=~0.063681085{lt}{75.79}^{o}

From eq. 1
{Z}~=~0.063681085~*~{{0.48^2}/{2}}
{Z}~=~0.007336061~{Omega}

Calculating the current at Fault2 @ 0.48kV:
I_{fault2}~=~{1000*kV}/{sqrt{3}*Z}
I_{fault2}~=~{1000*0.48}/{sqrt{3}*0.007336061}

I_{fault2}~=~ 37,776.15~A

{X/R}~=~tan(75.79^o)~=~3.95

Fault 3 (0.48kV)

R_{pu}~=~R1_{pu}~+~R2_{pu}~+~R3_{pu}~+~R4_{pu}
R_{pu}~=~0.000305133~+~0.005324512~+~0.010000644~+~0.104166667
R_{pu}~=~0.119796955

X_{pu}~=~X1_{pu}~+~X2_{pu}~+~X3_{pu}~+~X4_{pu}
X_{pu}~=~0.004576996~+~0.000532451~+~0.056623645~+~0.062934028
X_{pu}~=~0.12466712

Z_{pu}~=~R_pu~+~jX_pu
Z_{pu}~=~0.119796955~+~j0.12466712
Z_{pu}~=~0.172896504{lt}{46.14}^{o}

From eq. 1
{Z}~=~0.172896504~*~{{0.48^2}/{2}}
{Z}~=~0.019917677~{Omega}

Calculating the current at Fault2 @ 0.48kV:
I_{fault3}~=~{1000*kV}/{sqrt{3}*Z}
I_{fault3}~=~{1000*0.48}/{sqrt{3}*0.019917677}

I_{fault3}~=~ 13,913.68 ~A

{X/R}~=~tan(46.14^o)~=~1.04

IV. Impedance Method vs. Per Unit Method

The results of the Impedance Method and Per Unit Method are the same hence the accuracy of Per Unit Method is comparable to the Impedance Method.

See also  Importance of Standards in Engineering Design