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 General preliminary comments
The present technical manual is intended as an aid in project design and the application of low-voltage switchgear and controlgear 
in switchgear assemblies and machine control. The focus of the document is on electromechanical switchgear, however electronic 
devices used in low-voltage engineering have also been included. They are in many cases an effective alternative to mechanical 
devices.

The discussions relate – insofar relevant – to the IEC standards, which correspond to the European CENELEC standards. Where 
standards are quoted, the respective IEC designations are listed. The numbering of the CENELEC standards (EN) largely corresponds 
to that of the IEC standards. National standards (e.g. DIN/VDE or BS) in some cases have differing numbering for historical reasons, 
but in terms of content are largely identical to the IEC and EN standards, apart from rare national deviations. In relation to the 
requirements of other standard zones, especially in North America, reference is made to specific publications. The physical 
characteristics are generally applicable.

For switchgear combinations the standard IEC 60439-1 is referred to that is in effect at issuance of this document. It is expected that 
IEC 61439-1 will shortly replace IEC 60439-1. The statements in the present documentation for switchgear assemblies also apply for 
IEC 61439-1. 

Statements made in this document concentrate on the underlying principles and facts and avoid – insofar as this is possible – stating 
technical data relating to specific products in order to avoid premature obsolescence of the information contained. The applicable 
technical data about the products should be obtained from the latest valid product documentation as published in printed and 
“electronic” catalogues and electronic documentation like RAL
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1  Load characteristics and utilisation categories
The characteristics of the load to be switched or controlled determine the loading of the switchgear and correct selection of the latter 
for the respective application. In particular the loading of contacts by current and voltage when circuits are made and broken is of 
high significance. Thus the making and breaking current under resistance load corresponds to the continuous operational current 
while for example squirrel-cage induction motors draw a multiple of the rated operational current when they are switched on and 
accelerate.

1.1  Utilisation categories simplify the selection of devices
In order to make the choice of devices easier, utilisation categories are defined in the standards for low-voltage switchgear  
(IEC 60947-1, -2, -3, -4, -5, -6) that take into account the intended application and hence the associated loading of the various  
low-voltage switchgear types, such as contactors, disconnectors, circuit breakers and load switches (Tab. 1.1 1). The rated operational 
currents or rated operational powers are listed in the technical data for the devices – usually for various rated operational voltages. For 
the sake of universal applicability the data is usually stated for several utilisation categories for one  
and the same piece of switchgear. For project engineers, the selection of devices is basically reduced to the comparison of perform-
ance data of the switchgear for the respective utilisation category with the ratings of the load and the choice of a  
device which meets or exceeds the ratings of the load.

When the rated operational voltage Ue and the rated operational current Ie are stated for a certain utilisation category, the required 
making and breaking capacity for the item of switchgear is defined. Thus in general no further agreements between users and 
manufacturers are required. The selection of a suitable device and comparison of products is thus facilitated.

The test regulations in the IEC standards define the test parameters for the individual utilisation categories. Manufacturers are obliged 
to carry out tests according to these standards. This ensures the suitability of the tested devices for the respective application and frees 
the user from getting “bogged down” in technical details.

The conditions for application in practice may differ considerably – in a favourable as well as adverse sense – from these standardised 
conditions. Examples are heavy-duty starting, high frequency of operation, especially long equipment life span.  
In such cases, the users and manufacturers must agree the permitted loads. In the catalogues as well as in the RALVET electronic 
documentation, the corresponding performance data are stated for the most common special applications.

Because of the very high and cost-intensive expenditures for testing, data for the most important and common utilisation categories 
are usually provided. In cases going over and beyond this consultation is required.
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Nature of  
current Category Typical applications

Relevant
IEC product
standard

A.C.

AC 20A, AC 20B
AC 21A, AC 21B

AC22A, AC22B
AC23A, AC23B
 3)

Connecting and disconnecting under no-load conditions
Switching of resistive loads, including moderate overloads
Switching of mixed resistive and inductive loads, including  
moderate overloads
Switching of motor loads or other highly inductive loads

60947-3

AC1

AC 2
AC 3
AC 4
AC 5a
AC 5b
AC 6a
AC 6b
AC 7a
AC 7b
AC 8a

AC 8b

Non-inductive or slightly inductive loads, resistance furnaces
Slip-ring motors: starting, switching off
Squirrel-cage motors: starting, switching off motors during running
Squirrel-cage motors: starting, plugging 1), inching 2)
Switching of electric discharge lamp controls
Switching of incandescent lamps
Switching of transformers
Switching of capacitor banks
Slightly inductive loads in household appliances and similar  
applications
Motor-loads for household applications
Hermetic refrigerant compressor motor control with manual  
resetting of overload releases
Hermetic refrigerant compressor motor control with automatic 
resetting of overload releases

60947-4-1

AC 52a

AC 52b
AC 53a

AC 53b
AC 58a

AC 58b

Control of slip ring motor stators: 8 h duty with on-load currents for 
start, acceleration, run
Control of slip ring motor stators: intermittent duty
Control of squirrel-cage motors: 8 h duty with on-load currents for 
start, acceleration, run
Control of squirrel-cage motors: intermittent duty
Control of hermetic refrigerant compressor motors with automatic 
resetting of overload releases: 8 h duty with on-load currents for 
start, acceleration, run
Control of hermetic refrigerant compressor motors with automatic 
resetting of overload releases: intermittent duty

60947-4-2

AC 51
AC 55a
AC 55b
AC 56a
AC 56b

Non-inductive or slightly inductive loads, resistance furnaces
Switching of electric discharge lamp controls
Switching of incandescent lamps
Switching of transformers
Switching of capacitor banks 

60947-4-3

AC 12

AC 13
AC 14
AC 15

Control of resistive loads and solid-state loads with isolation by  
optocouplers
Control of solid-state loads with transformer isolation
Control of small electromagnetic loads
Control of a.c. electromagnetic loads 

60947-5-1

AC 12
AC 140

Control of resistive loads and solid state loads with optical isolation
Control of small electromagnetic loads with holding (closed)  
current ≤ 0,2 A, e.g. contactor relays

60947-5-2

AC 31A, AC 31B
AC 33A, AC 33B

AC 35A, AC 35B
AC 36A, AC 36B 
3) 

Non inductive or slightly inductive loads
Motor loads or mixed loads including motors, resistive loads and up 
to 30 % incandescent lamp loads
Electric discharge lamp loads
Incandescent lamp loads 

60947-6-1
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Nature of  
current Category Typical applications

Relevant
IEC product
standard

A.C. AC 40

AC 41
AC 42
AC 43
AC 44
AC 45a
AC 45b

Distribution circuits comprising mixed resistive and reactive loads 
having a resultant inductive reactance
Non-inductive or slightly inductive loads, resistance furnaces
Slip-ring motors; starting, switching off
Squirrel-cage motors: starting, switching off motors during running
Squirrel-cage motors: starting, plugging1), inching 2)
Switching of electric discharge lamp controls
Switching of incandescent lamps

60947-6-2

AC 7a

AC 7b

Slightly inductive loads for household appliances and similar  
applications
Motor-loads for household applications 61095

A.C. and D.C. A
B

Protection of circuits, with no rated short-time withstand current
Protection of circuits, with a rated short-time withstand current 60947-2

D.C.

DC 20A, DC 20B
DC 21A, DC 21B
DC 22A, DC 22B

DC 23A, DC 23B
 3)

Connecting and disconnecting under no-load conditions
Switching of resistive loads, including moderate overloads
Switching of mixed resistive and inductive loads, including  
moderate overloads (e.g. shunt motors)
Switching of highly inductive loads (e.g. series motors) 

60947-3

DC 1
DC 3

DC 5

DC 6

Non-inductive or slightly inductive loads, resistance furnaces
Shunt-motors, starting, plugging 1), inching 2). Dynamic breaking  
of motors
Series-motors, starting, plugging 1), inching 2). Dynamic breaking  
of motors
Switching of incandescent lamps 

60947-4-1

DC 12

DC 13
DC 14

Control of resistive loads and solid-state loads with isolation by 
optocouplers
Control of electromagnets
Control of electromagnetic loads having economy resistors in circuit

60947-5-1

DC 12
DC 13

Control of resistive loads and solid state loads with optical isolation
Control of electromagnets 60947-5-2

DC 31
DC 33
DC 36

Resistive loads
Motor loads or mixed loads including motors
Incandescent lamp loads 

60947-6-1

DC 40

DC 41
DC 43

DC 45

DC 46

Distribution circuits comprising mixed resistive and reactive loads 
having a resultant inductive reactance
Non-inductive or slightly inductive loads, resistance furnaces
Shunt-motors: starting, plugging 1), inching 2). Dynamic breaking of 
d.c. motors
Series-motors: starting, plugging 1), inching 2 ). Dynamic breaking of 
d.c. motors
Switching of incandescent lamps

60947-6-2

1) By plugging is understood stopping or reversing the motor rapidly by reversing motor primary connections while the 
motor is running.
2) By inching (jogging) is understood energising a motor once or repeatedly for short periods to obtain small movements 
of the driven mechanism.
3) The utilisation categories with annex A apply for frequent operations, those with annex B for infre-quent/occasional  
operations

Tab. 1.1 1
Examples of utilisation categories for low-voltage switchgear as per IEC 60947-1 ed. 5.0 Appendix A.
Copyright © 2007 IEC, Geneva, Switzerland. www.iec.ch
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 1.2 Electrical heating devices
Electrical heating devices are for example used for heating rooms, industrial resistance furnaces and air-conditioning plants.

In the case of wound resistance elements, the making current can be 1.4 times the rated current. In the selection of switchgear devices 
it should be noted with respect to the rated operational current that (in contrast to the motor) the current consumption increases 
when the mains voltage increases. When contactors are used, utilisation category AC 1 should be used as a basis for alternating current 
and DC 1 for direct current. For manual switching, a load-switch with corresponding load-switching capacity (AC 21) is sufficient.

Furthermore, if the ambient temperature is very high this must be taken into account. 

Heating circuits are often single pole circuits. Usually multi-pole switchgear devices with poles connected in parallel are used, which 
enables to increase the permissible load current. For the load-carrying capacity of switchgear units with poles connected in parallel, 
see section 2.4.1.1.

1.3  Lamps and illumination equipment
The illumination devices are subject to constant change due to developments in energy efficiency and electronics. For the choice of 
associated switching (e.g. contactors) and protective equipment (e.g. miniature circuit breakers and circuit breakers) not only the type 
of lighting equipment itself should be taken into account but also the kind of control circuit. Particular attention should be paid to 
inrush currents caused by compensation capacitors and charging of electronic control devices. This loading may be reduced by the 
attenuating effect of long lines.

The startup and operational current loads should be obtained from the respective manufacturers. The below descriptions relate to the 
basic characteristics. Also see Tab. 1.3 1.

In general it is recommended to utilise a max. of 90 % of the current capacity of the switchgear as the current consumption of lighting 
equipment typically increases when the voltage increases.

1.3.1  Incandescent lamps
The filaments of incandescent lamps have a very low ohmic resistance when cold. This creates a high current peak when they are 
switched on (up to 15 · le). The making capacity of the switchgear must thus at least correspond to this value (utilisation category  
AC 5b). Upon switching off, only the rated current has to be disconnected due to the high resistance of the hot filaments.

1.3.1.1  Halogen lamps
Halogen lamps are actually a version of incandescent lamps and their behavior is basically the same as the latter. The lamps are often 
designed for low voltages and powered via a transformer or electronic mains adapter. Their inrush currents should be taken into 
account for switching on.

1.3.2  Discharge lamps
Discharge lamps such as fluorescent tubes, energy saving lamps, mercury vapor lamps, halogen metal vapor lamps or sodium vapor 
lamps require both a starting circuit and a current limitation device. These devices may be conventional or electronic. Discharge lamps 
with electromagnetic series chokes have a low power factor and are therefore usually compensated. The compensation capacitance 
leads to high inrush currents that must be taken into account when the switchgear is selected.

Most electronic series devices have a high power factor (e.g. cosφ ≈ 0.95), nevertheless during switching on there occurs a charging 
current surge that loads the switchgear accordingly.

When selecting the switchgear for high in-rush currents, the permitted rated power for the switching of capacitors should be 
taken into account as per utilisation category AC 6b. In order to prevent undesired release of miniature circuit breakers with the 
simultaneous activation of a number of fluorescent tubes, information is provided by the tube manufacturers on the maximum 
number of luminescent tubes (including series devices) that can be operated via a single protective switch.
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Tab. 1.3 1
Making currents for lamps and notes on selecting switchgear
1) ECG … Electronic control gear

Lamp type, 
(switch)

Making current 
peaks

Startup time
[min]

Starting  
current

cos φ Calculation 
basis for Ie

Incandescent lamps 15 ∙ Ie - - 1 ≤ IeAC-5b 

Halogen lamps
- Transformer operation
- ECG1) opertion 

10 ∙ Ie - - 0.95 see Section1.4
≤ 0.7 ∙ IeAC-3

Luminescent lamps 
(choke operation)
- uncompensated
- parallel compensated
- DUO circuit 

≈ 2 ∙ Ie

≈ 20 ∙ Ie

≈ 2 ∙ Ie

-
-
-

-
-
-

0.5
0.9
0.9

 
≤ IeAC-5a

≤ IeAC-1, ≤ IeAC-6b

≤ IeAC-1

Luminescent lamps 
- ECG1) operation, AC 10 ∙ Ie - - 0.9 ≤ 0.7 ∙ IeAC-3

Mercury vapor high  
pressure lamps
- uncompensated
- parallel-compensated

≈ 2 ∙ Ie

≈ 20 ∙ Ie 
3 – 5
3 – 5

≈ 2 ∙ Ie

≈ 2 ∙ Ie

0.4 – 0.6
0.9

≤ 0.5 ∙ IeAC-1

≤ 0.5 ∙ IeAC-1, ≤ IeAC-6b

Halogen metal vapor lamps
- uncompensated
- parallel-compensated

≈ 2 ∙ Ie

≈ 20 ∙ Ie

5 – 10
5 – 10

≈ 2 ∙ Ie

≈ 2 ∙ Ie

0.4 – 0.5
0.9

≤ 0.5 ∙ IeAC-1

≤ 0.5 ∙ IeAC-1, ≤ IeAC-6b

Sodium vapor high pressure 
lamps
- uncompensated
- parallel-compensated

≈ 2 ∙ Ie

≈ 20 ∙ Ie

5 – 10
5 – 10

≈ 2 ∙ Ie

≈ 2 ∙ Ie

 0.4 – 0.5
0.9

≤ 0.5 ∙ IeAC-1

≤ 0.5 ∙ IeAC-1, ≤ IeAC-6b

Dual-source lamps ≈ 1.3 ∙Ie ≈ 3 ≈ 1.3 ∙ Ie 1 ≤ 0.9 ∙ IeAC-1

1.4 Transformers
If a low-voltage transformer is switched on, there is a short-term current surge (rush). The peak surge currents evoked by field set-up 
can be up to 30 times greater than the transformer rated current. The inrush currents vary according to the transformer type. They 
depend on the position of the coil, the characteristics of the magnetic circuit and especially on the phase angle of the voltage during 
switching on. The switchgear must have a correspondingly high making capacity in order to avoid contact welding.

IEC 60947-4-1 provides the utilisation category AC 6a for switching transformers. The permitted rated operational current IeT  
(AC 6a) for switching transformers with a making rush factor of ≤ 30 can be determined as per IEC 60947-4-1 (Tab.7b) from the data of 
the AC 3 switching capacity:

IeT30 = 0.45 ∙ IeAC-3

for n ≤ 30

n = peak value of the making current/peak value of the rated operational current

In the case of larger rush factors the following applies:

IeTn = IeT30 ∙ 30/n
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The factor «n» should be specified by the transformer supplier. If no specifications are available, the following guideline values apply 
for «n»:

Transformers up to approx. 1 kVA  at 230 V    n ≈ 20

 at 400 V    n ≈ 15

larger transformers  at 400 V    n ≈ 15 ... 30

Note:

The thermal continuous current Ith(e) may not be exceeded.

Transformers in welding machines are usually designed so that inrush current peaks and the short-circuit current with electrodes 
short-circuited are limited (n ≈ 10). The contactor is selected for switching these currents operationally.

If the individual welding current surges are not switched by power semiconductors but by the primary contactor, this means that the 
latter has a high switching frequency and a very high number of operations. It is essential that the contactor selected is checked with 
respect to the permitted frequency of operation and the electrical life span. For the electrical endurance the selection can be based on 
approx. 70 % of the AC 1-ratings as long as the inrush currents are limited.

1.5 Reactive power compensation and switching of capacitors

1.5.1 Reactive power compensation
In electrical networks in which inductive consumers (e.g. motors) are switched on and off, the power factor cos φ often changes with 
each switching operation. The Power Utilities demand from their consumers that the ratio of the consumed effective power P to the 
drawn apparent power S does not fall below a certain value, as the transmission of apparent power is uneconomic.

The reactive power of motors, luminescent lamps with series chokes and other inductive loads is therefore frequently compensated by 
connecting capacitors, in order to reduce the additional load of transformers and lines by the reactive current.

In deciding whether it is more advantageous to compensate individual consumers with fixed capacitors or to provide central 
compensation units, economic and technical considerations are definitive. Control units for central compensation have a higher price 
per power unit (kVA). If allowance is made however for the fact that in most operations not all consumers are switched on at the same 
time, a lower installed capacitor power is often sufficient for central compensation.

1.5.1.1 Individual compensation
For individual compensation (Fig. 1.5 1 a) the capacitors are directly connected to the terminals of the individual consumer  
(e.g. motor, transformer, induction heater, luminescent lamp) and switched together with these via a common switchgear unit. 
Single compensation is recommended with large consumers with constant power consumption and long ON-times. They offer 
the advantage that the lines to the consumers are also relieved of load. The capacitors can frequently be connected directly to the 
terminals of the individual consumer and be switched on and off with a common switchgear device.

 

a) Individual compensation  b) Group compensation c) Central compensation

Fig. 1.5 1

Compensation types

~
~~

~ ~ ~

~~

Ne NaXe

1
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In the case of motors, the capacitors can be connected up- or downstream the motor protection unit (Fig. 1.5 2). In most cases the 
capacitor will be connected parallel to the motor (case 1). In this case the motor protection unit should be set to a smaller setting 
current Ie than the motor rated current IN as the magnitude of the line current falls due to the compensation:            

   

 Case 1       Case 2   

Fig. 1.5 2

Individual compensation of motors

Ie  = (cos φ1/cos φ2) · IN

cos φ1 = power factor of the uncompensated motor

cos φ2 = power factor of the compensated motor

1.5.1.2 Group compensation
For group compensation each compensation device is assigned to one consumer group. This may consist of motors or also for 
example of luminescent lamps that are connected to the mains via a contactor or a circuit breaker (Fig. 1.5 1 b).

1.5.1.3 Central compensation
Mostly reactive power control units are used for central compensation which are directly assigned to a main- or sub-distribution 
station (Fig. 1.5 1 c). This is especially advantageous if many consumers with differing power requirements and variable on-times are 
installed in the network.

Central compensation also offers the advantage that

	 •	 the	compensation	device	is	easy	to	monitor	due	its	central	location,

	 •	 any	retrospective	installation	or	extension	is	relatively	simple,

	 •	 the	capacitive	power	is	continuously	adapted	to	the	reactive	power	requirement	of	the	consumers	and

	 •	 making	allowance	for	a	simultaneity	factor	a	lower	capacitance	is	often	required	than	for	individual	compensation.

See IEC 61921; Power capacitors – Capacitor batteries for correcting the low-voltage power factor

1.5.2 Switching of capacitors
Capacitors form oscillator circuits together with the inductances of the lines and the transformers. During closing, very high transient 
currents with higher frequencies may flow. Typical values are 10 ... 30 times the capacitor rated current at frequencies of 2 ... 6 kHz. For 
this reason, the switching of capacitors represents a very heavy load on switchgear and can result in increased contact burn-off or 
under adverse conditions even welding of the contacts. Especially when capacitors are switched by contactors, it should be ensured 
that they are discharged before switching-on to avoid even higher transient currents and welding of the contacts in case of adverse 
phase angles.

A harmonic component in the supply voltage leads to increased current consumption by the capacitors and results in additional 
heating of the current carrying circuits. To prevent any undesired temperature rise, the rated operational current of the contactors, load 
switches and circuit breakers shall be higher than the capacitor rated current. Generally this should only be 70 … 75 % of the rated 
current of the circuit breaker.

Taking into account the aforementioned facts, the switchgear should be dimensioned so that

	 •	 it	does	not	weld	at	the	high	making	currents	and

	 •	 that	no	unacceptable	temperature	rise	occurs	during	continuous	duty.

Fig. 1.5-2

3~ 3~
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1.5.2.1 Switching-on single capacitors
If a capacitor with a specific capacity is connected to the power supply, then the making current is largely determined by the 
transformer size and by the network impedance to the capacitors, i.e. from the prospective short-circuit current at the installation site 
of the capacitor.

The loading of the switchgear increases as

	 •	 the	capacitance	of	the	capacitors	increases,

	 •	 as	the	rated	power	of	the	supplying	transformer	increases	and	hence	its	short-circuit	impedance	decreases,

	 •	 decreasing	impedance	of	the	connecting	lines.

Table 7 in IEC 60947-4-1 states the below derivation of capacitor switching capacity IeAC-6b from the rated operational current IeAC-3 in 
relation to the prospective short-circuit current ik:

 

at

 

valid for

 

1.5.2.2 Switching of long, screened lines
Long screened lines have comparatively large capacitances and therefore create high transient current loads during switching. Typical 
applications are variable frequency drives. The peak currents to be expected should be taken into account when selecting switchgear 
to the same extent as for the switching of single capacitors.

1.5.2.3 Switching capacitors of central compensation units
If individual capacitors of capacitor banks are switched – for example in reactive power control units - especially adverse conditions 
occur at closing of the switchgear contacts as the capacitors already connected to the power supply represent an additional source of 
energy.

The inrush current is limited by the impedance of the circuit (conductors, capacitor inductance, inductances between the individual 
capacitor branches).

The loading of the switchgear is therefore determined by

	 •	 the	power	ratio	of	the	switched	capacitors	to	those	already	connected	to	the	power	supply	and

	 •	 the	impedance	of	the	individual	circuit	branches

For avoiding welding of the switching contacts of the contactors the switchable capacitance can e.g. be increased, by additional 
inductances in the capacitor branches (e.g. a few winding turns of the connecting wires).

With special capacitor-contactors or capacitor-contactor-combinations that connect capacitances to the power supply via pre-
charging resistances, a very high switchable capacitance at a minimum of interference with the supplying network can be achieved, as 
the making currents are specifically limited by the resistances and strongly reduced. 

AC 6b is defined in IEC 60947-4-1 as the utilisation category for the switching of capacitor banks.
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1.6  Control circuits, semiconductor load and electromagnetic load
Regarding the specific aspects of the switching of control circuits, also refer to Section 5.

The utilisation categories AC 12 to AC 15 for alternating current and DC 12 to DC 14 for direct current (see Tab. 1.1 1) make allowance 
for the specific loading of switchgear for switching of control circuits with semi-conductors or electromagnetic loads. When 
electromagnets are switched, for example contactor coils, particular attention is paid to the increased making load because of the pull-
in current of the magnets and the increased breaking load due to the high inductance of the closed magnets.

In addition to the switching capacity of the contact in the sense of a maximum permitted load, very often the key criterion in the 
switching of control circuits is contact reliability, i.e. the capability of a contact or a chain of contacts to reliably switch small signals. 
This is especially the case for contacts in circuits of electronic controllers and in the signal range of ≤ 24 V / ≤ 20 mA  
(also see section 5.3.5).

1.7  Three-phase asynchronous motors
The three-phase asynchronous motor – also known as the induction motor – is the most frequently used motor type for industrial 
drives. Especially in the form of a squirrel-cage induction motor, it dominates the field of industrial electrical drive technology.

1.7.1  Principle of operation
The key functional elements of the three-phase asynchronous motor (see Fig. 1.7 1) are the fixed stator with a three-phase coil 
supplied by the three-phase supply network and the revolving rotor. There is no electrical connection between the stator and rotor. 
The currents in the rotor are induced by the stator across the air-gap. The stator and rotor are composed of highly magnetizable 
dynamo plates with low eddy current and hysteresis losses.

 

 

Fig. 1.7 1

Sectional view of a squirrel-cage three-phase motor with enclosed design

When the stator coil is connected to the power supply, the current initially magnetizes the laminated metal body.  
This magnetizing current generates a field that rotates with the synchronous speed ns.

  ns = 60 ∙ fIp

  ns = synchronous speed in min-1 

 f = frequency in s-1

 p = pole pair number (pole number/2)

For the smallest pole number of 2p = 2, with a 50 Hz power supply, the synchronous speed is 

ns = 3000 min-1. For synchronous speeds with other pole numbers and for 50 and 60-Hz power supplies, see Tab. 1.7 1.
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Tab. 1.7 1

Synchronous speeds for 50 and 60 Hz power supplies

The rotating field of the stator induces a voltage in the coil of the rotor, which in turn creates a current flow therein. With the 
interaction of the rotating field of the stator with the conductors in the rotor through which a current flows, a torque is created in the 
direction of the rotating field.

The speed of the rotor is always smaller than the synchronous speed by the so-called slip s.

 s =  (ns-n)Ins

 s slip

 ns synchronous speed

 n operational speed

It is only because of this speed differential that a voltage can be induced in the rotor and hence the rotor current that is the 
prerequisite for the generation of the motor-torque. The slip in-creases with the load torque. Its rated value at the rated load of the 
motor depends on the rotor resistance and hence on the energy efficiency of the motor.

The torque curve of the induction motor is characterized by the breakdown-torque. This means that the torque of the motor increases 
with increasing speed to a maximum value and then rapidly falls back to zero at the synchronous speed. If the mechanical load of 
a motor running at normal service is increased beyond the value of the breakdown torque, it will stall, i.e. it comes to a halt. The 
magnitude of the breakdown torque is determined by the electrical reactance of the motor and hence by the motor’s design. The slip 
that occurs at breakdown torque can be influenced by the rotor resistance. This effect is exploited in slip-ring motors by switching on 
external resistors (Fig. 1.7 2 and Fig. 1.7 3).

  

Fig. 1.7 2

The torque characteristic of asynchronous motors can quasi be extended by connecting resistors in the rotor circuit.

TB breakdown torque

s slip

sB breakdown slip

R2 rotor resistance

Pole 
number

2 4 6 8 10 12 16 24 32 48

ns 50 Hz 3000 1500 1000 750 600 500 375 250 188 125

ns 60 Hz 3600 1800 1200 900 720 600 450 300 225 150



1

1-21

Asynchronous motors behave electrically like transformers. The secondary winding is the rotor and the mechanical power output of 
the motor acts on the primary side like a – variable – load resistance. If no mechanical power output is produced at rest (on initiation 
of start-up), this load resistance is zero, i.e. the transformer is in effect secondarily shorted. This leads – depending on the rotor-internal 
resistance – to a high or very high current consumption of the motor during starting. In the case of slip-ring motors, the current 
consumption is reduced by connecting external resistors and hence the torque characteristic is adapted to the driven machine. With 
squirrel-cage induction motors (see section 1.7.1.2) the current consumption and hence the torque characteristic are influenced by 
the design of the rotor cage.

1.7.1.1 Slip-ring motors
With slip-ring motors, the rotor winding is connected to slip rings and terminated with external resistances. The resistance of the 
external resistors influences the current flowing through the rotor and the speed-torque characteristic.

 

Fig. 1.7 3

Principal diagram of a slip-ring motor with external rotor resistances

Slip-ring motors represent the conventional method of controlling starting torque (and the current consumption) by selection of the 
rotor resistances. The highest attainable starting torque corresponds to the breakdown torque of the motor. This is independent of the 
magnitude of the rotor resistance. The primary current consumption of slip-ring motors is proportional to the rotor current. Thanks to 
these characteristics, slip-ring motors can achieve a high starting torque with relatively low current consumption.

The external resistors are usually changed in steps during motor startup. The rotor windings are shorted in normal continuous duty. By 
designing the rotor resistances for continuous duty, it is even possible to continuously influence the speed, albeit at the cost of high 
heat dissipation. 

 

 

Fig. 1.7 4

Torque characteristic of a slip-ring motor with full-load start-up and stepped change of the rotor resistance during start-up

T4 … T1 motor torque with series-connected resistance stages (R4>R3>R2>R1)

T0 motor torque with shorted rotor windings

Tav-acc average starting torque

Te ≈ Tl rated torque corresponds to load torque

Fig. 1.7-3

M
3~
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1.7.1.2 Squirrel-cage induction motors
In the case of asynchronous machines with squirrel-cage induction rotors, the rotor consists of a grooved cylindrical laminated rotor 
package with rods of highly conductive metal (preferably aluminum), that is joined on the face side by rings to form a closed cage.  
The cage – at least in the case of small motors – is usually cast into the rotor.

To reduce the starting current and influence the starting torque characteristic, the coil rods are specially designed so that they create 
a high rotor resistance at rest and at low speeds by current displacement. They are usually placed crosswise at an angle to the axis of 
rotation to avoid variations in torque and to ensure smooth running characteristics.

Fig. 1.7 5 shows the typical characteristic of the torque and of the current in a cage induction motor in the speed range from rest to 
synchronous speed. Material and design form of the cage influence the shape of the characteristic curves.

Fig. 1.7 5

Typical current and torque characteristic of a squirrel-cage induction motor between rest and synchronous speed.

IΔ current characteristic with delta-connected windings

TΔ torque characteristic with delta-connected windings 

TL load torque (example)

The operating characteristics (Fig. 1.7 6) show that the asynchronous motor has a so-called “hard” speed characteristic, i.e. the speed 
changes only slightly with a change in loading. At low loading, the current consumption approaches the value of the idle running 
current, which is basically the same as the magnetisation current of the motor.

 

Fig. 1.7 6

Operating characteristics of an asynchronous motor as a function of load

n        = speed

ns        = synchronous speed

s         = slip

P1       = power intake

P2   = power output

Pe  = rated operational power

η         = efficiency
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IEC Class IEC Code EFF Code 1) NEMA
Super Premium Efficiency IE4
Premium Efficiency IE3 NEMA Premium
High Efficiency IE2 EFF1 EPAct
Standard Efficiency IE1 EFF2
Below stand Efficiency ‘--- EFF3
1) CEMEP classification (CEMEP = European sector committee of Manufacturers of Electrical Machines)

cos φ = power factor

I          = current consumption

Ie           = rated operational current

n The speed n only decreases slightly with increasing load. Normal squirrel-cage induction motors thus have  
 “hard” speed characteristics.

s The slip s increases roughly proportionally with increasing load.

cos φ The power factor cos φ is strongly dependent on the load and only reaches its highest value in a state of 
 overload. The power factor is relatively adverse in the part-load range, as the magnetisation is practically 
 constant.

η The efficiency η remains relatively constant and in the upper half-load range remains practically unchanged. It   
 generally reaches its highest value below the rated operational power Pe.

I The current I increases proportionally from around the half-load mark. Below this point it falls less strongly and 
 then goes over to the idle running current I0 (constant magnetization)

P1 Starting from the idle running consumption, the power intake P1 increases roughly proportionately to the load 
 In the overload range, its rate of increase is somewhat higher as losses increase more strongly.

 T The torque in the operating range is calculated as follows:

U voltage across the motor [V]

I current [A]

cosφ power factor

η efficiency of the motor

n speed [min-1]

The rated operational currents, starting currents and the torque characteristic of cage induction motors depend, among other 
things, on their design, especially the material and form of the cage, as well as on the number of poles. The specifications provided 
by the motor manufacturer apply in each individual case. Typical values for motors can be obtained from the RALVET electronic 
documentation.

For switching asynchronous motors, under IEC 60947 the utilisation categories AC 2 to AC 4 among others are defined to facilitate the 
user in the selection of suitable contactors 

(Tab. 1.1 1). These utilisation categories make allowance for the loading of the switchgear by the increased making currents when 
stationary motors are switched on and for the fact that the effective switching voltage of a running motor is only around 17 % of the 
rated operational voltage because the running motor develops a back-e.m.f. (counter voltage to supply voltage).

1.7.1.2.1  High efficiency motors
In the context of the efforts of saving energy and pollution control, the efficiency of electric motors and drives has become an issue. 
This on the background of appr. 40% of the global electricity being used for operating electric motors. The IEC standard 60034-30 
(2008) defines efficiency classes for general purpose induction motors of the power range of 0.75 …375 kW and with 2, 4 or 6 poles 
(Tab. 1.7 2). The term MEPS (Minimum Energy Performance Standard) is being used in this context [25]. It is expected that efficiency 
class IE2 shall become the minimum level for new motors in the area of the European Union, IE3 may be required in a further step 
(minimum requirements, if any, are subject of national legislation).

√3 .  U . I . cos φ . η . 9.55

n
[Nm]T=

Tab. 1.7 2

Efficiency classes for general purpose induction motors according to IEC 60034-30 (2008) in comparison to the EFF-codes of CEMEP  
and the codes used by NEMA. IE4 is not yet defined and reserved for the future.
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High efficiency motors that comply with the MEPS standard may have higher starting currents and cause higher transient current 
peaks upon switching. The starting torque may be compara-tively lower for the same starting current, while the breakdown torque 
may be higher.

When selecting switchgear for starting high efficiency motors, attention should be paid to the selection of the proper release class of 
overload relays (start-up time could become longer at higher starting current levels). In case of using (current-limiting) circuit breakers 
the choice of breakers with high magnetic trip (c.b.’s for transformer protection) may be required for avoiding nuisance tripping due to 
high switching transients. 

Above factors should particularly be considered in retrofit applications when replacing old standard motors with new high efficiency 
motors.

Also, if soft starters are used, the start current may be higher for a given start torque, so a check should be made to ensure 
the equipment is rated accordingly. The available start torque may also need to be evaluated to ensure matching to the load 
characteristics.

1.7.1.3 Influence of the voltage across the windings
In order to reduce the high current consumption of squirrel-cage induction motors on starting and the associated, often disruptive, 
power supply loading and to reduce the high starting torque when driving sensitive machines, a wide variety of methods is available 
that is based on the reduction of the voltage applied across the motor windings. A reduced voltage across a motor winding results in 
a proportional reduction in the current flowing through the winding and consequently in a reduction of the torque developed, by the 
square of the reduction in the voltage applied. ½ voltage for example thus means ¼ torque.

A reduction of the voltage across the motor windings can in principle be achieved in one of two ways:

	 •	 Reduction	of	the	voltage	on	the	motor	while	leaving	the	internal	connections	of	the	individual	windings	 
  unchanged (normally connected in delta). Example: electronic soft starter devices.

	 •	 Rearranging	the	connections	of	the	motor	windings	so	that	the	voltage	on	the	windings	is	reduced.	 
  Example: Star-delta circuit.

The ratio of the available motor torque to the motor current flowing is different in above cases. This is illustrated with the  
example of the conventional star-delta circuit compared with the electronic soft starter device (Fig. 1.7 7):

 

Fig. 1.7 -7

Current consumption and torques with direct starting (delta-connected), star-connected starting and starting with the aid of a soft 
starting device by reducing the voltage across the motor terminals.

Starting method Direct (Δ, delta) Y (star, wye) Soft starting

Current in the pole 
conductor

100 % 33 % 33 % 57 %

Torque 100 % 33 % 11 % 33 %

Coil voltage 100 % 57 % 33 % 57 %

Fig. 1.7-7
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IΔ Current consumption with delta-connected direct starting

TΔ  Torque with delta-connected direct starting

IY Current consumption for star-connected starting

TY Torque for star-connected starting

ISS Current consumption when starting by means of soft starting device at torque TY

TSS Torque when starting by means soft starting device and same current consumption as  for star-connected starting 

A startup in star circuit develops a higher torque with the same loading on the power supply, as the voltage across the motor coils is 
reduced by the circuit change. The windings current is at the same time the pole current, while in the case of a delta-connected motor 
two windings currents add vectorial (factor √3 ) to the current of the supplying pole.

In relation to the loading of switchgear and its correct selection for starting and operation of squirrel-cage induction motors  
with voltage reduction, see Sections 3.3, 3.4 and 3.9, in which the possible solutions are described in detail. 

When using soft starting devices, it should be remembered that the line-side switchgear operates the input of the soft starting device, 
i.e. usually without load. The motor current is subject to harmonics during start-up, which can lead to undesired tripping, especially 
where electronic protective relays are used.

1.7.1.4 Performance of squirrel-cage induction motors with changing frequency
The basic form of the current and torque characteristic is independent of the frequency. In the sub-synchronous speed range  
(n = 0 … ns), the voltage must be reduced in proportion to the frequency to keep the magnetic flux constant and to avoid saturation 
of the ferromagnetic circuits. This means that the magnitude of the breakdown torque remains roughly constant. Motors that are 
operated for long periods at lower speeds must be externally ventilated due to the decreasing efficiency of their internal ventilation.

If the frequency rises above the supply frequency then a constant voltage is usually available from the frequency converter.  
This results in a weakening of the magnetic field with increasing frequency and consequently in a reduction of the breakdown  
torque in proportion to the square of the frequency. Up to the maximum speed, such drives can typically be operated with constant 
power output.

 

Fig. 1.7 8

Typical torque characteristic with variation of the frequency. 
Voltage proportional to frequency in the range 0 … fn 
Voltage constant in the range > fn

When selecting the line-side switching and protective equipment it should be remembered that frequency converters have large 
controlled or uncontrolled rectifier circuits on the input-side with large storage capacitances. This results in high charging current 
surges and in a high harmonic content in the current.
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2   Switching tasks and selecting the  
 appropriate switchgear
The selection and use of electrical equipment for switchgear assemblies and machine control units are regulated under 
the respective national legislation. Within the European Union (EU) the regulations are based on the CENELEC standards 
(EN standards) which are largely identical with the IEC standards. The IEC standards also form the basis of the applicable 
regulations in a large number of other countries. In North America, the standards of UL or CSA as well as the directives of 
NEMA, NEC etc. have to be applied. All these standards and regulations have as their common goal to guarantee the safety of 
electrical installations.

2.1 Electrical equipment complying with standards  
 and matching the application requirements
The standards IEC 60439-1 (Low-voltage switchgear and control gear assemblies) and IEC 60204-1 (Electrical equipment of 
machines) require among other things that the electrical equipment must correspond to the valid applicable standards. This 
means that low-voltage switchgear must be built and tested in compliance with the requirements of IEC 60947. Furthermore, 
the external design of the electrical equipment, its rated voltages, rated currents, life span, the making and breaking 
capacity, the short-circuit withstand capacity etc. must be suitable for the respective application. If necessary current-limiting 
protective devices must be used for protecting the electrical equipment. The coordination of electrical equipment, for 
example of motor starters to short-circuit protection equipment must comply with the applicable norms. When selecting 
electrical equipment the rated impulse withstand voltages and the generated switching overvoltages have to be considered.

According to these standards, all devices that are available on the market must comply with the applicable standards. For the 
EU and the EEA, this compliance is confirmed by a declaration of conformity by the manufacturer and the CE-sign. The same 
requirements apply to Switzerland, with the exception that the CE-sign is not compulsory (but is permitted). Other countries 
have their own licensing procedures and signs of conformity. So requires China the CCC-mark and Australia and New Zealand 
have introduced the C-tick-mark for EMC compliance of electronic products.

       
  

Fig. 2.1 1

CE-sign for the EU market (left), CCC-sign for China (center) and C-tick-mark for Australia and New Zealand

For special applications such as for example shipping, railroads or applications in hazardous environments where a risk of 
explosion exists, specific regulations apply in many cases that usually contain additional requirements beyond the basic IEC 
standards.

The standards to which the devices have been built and tested are listed in the catalogs. For low-voltage switchgear 
(contactors, motor starters, circuit breakers, load switches etc.) for the markets outside North America, these standards are 
basically the various parts of the IEC 60947.
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Example
Disconnector (Isolator) 
Switch disconnector 
Circuit breaker with isolating function

Fuse
Circuit breaker

Fuse (line protection)
Circuit breaker with thermal release
Motor protection relay (thermal, electronic)

Contactor
Load switch
Motor protection Circuit breaker

Motor
Heating
Lighting
Capacitor

Isolation

Short-circuit 
protection

Thermal 
protection

Operational 
switching

Load

2.2  Basic switching tasks and criteria for device selection
Load circuits include functional components in accordance with Fig. 2.2 1, whereby several functions can be combined in a single 
device.

 

Fig. 2.2 1

Functional elements of a load circuit

The selection of suitable devices to fulfill the required functions is based on the characteristics of the load (e.g. rated power and 
utilisation category), the operational requirements (e.g. switching frequency, required availability after a short-circuit) and the nature of 
the power supply (e.g. rated voltage, prospective short-circuit current).

2.2.1  Device types
Various types of device are available for carrying out the switching and protection tasks listed under 2.2 that are specially designed 
to fulfill the respective requirements. The various parts of IEC 60947 (Low-voltage switchgear and control gear) specify the design, 
performance and test features of the devices. The most important features of the main device types are presented below.

2.2.1.1  Disconnectors (isolating switches)
The disconnector is a mechanical switchgear that fulfills in the open position the requirements specified for the isolation function (IEC 
60947-1). The purpose of the isolating function is to cut off the supply from all or a discrete section of the installation by separating the 
installation or section from every source of electrical energy for reasons of safety. The key factor here is the opening distance. Isolation 
must be guaranteed from pole to pole and from input to output, whether this is by means of a visible isolation gap or by suitable 
design features within the device (mechanical interlocking mechanism).

A device fulfills the isolating function stipulated under IEC 60947-1 when in the “Open” position the isolation at a defined withstand 
voltage is assured between the open contacts of the main circuit of the switchgear. It must also be equipped with an indicator device 
in relation to the position of the movable contacts. This position indicator must be linked in a secure, reliable way to the actuator, 
whereby the position indicator can also serve as actuator, provided that it can only display the position “Open” in the “OFF” position, 
when all moving contacts are in the “Open” position. This is to be verified by testing.
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According to IEC 60947-3, an isolator must only be able to make and break a circuit, if either a current of negligible size is switched on 
or off, or if during switching no noticeable voltage difference between the terminals of each pole occurs. Under normal conditions it 
can conduct operational currents as well as under abnormal conditions larger currents (e.g. short-circuit currents) for a certain period.

       
      

Disconnector  (Load-) Switch Switch-disconnector   Circuit breakers  

Fig. 2.2 2

Switch symbols

The horizontal line in the switch symbol of the contacts indicates that they fulfill the isolating function

The isolator function can be realized with a variety of devices such as for example in disconnec-tors, fuse-disconnectors,  
switch-disconnectors, fuse-switch disconnectors and circuit breakers with isolating function.

2.2.1.2 Load switches
Load switches (or only “switches”) are mechanical switching devices capable of making, carrying and breaking currents under normal 
circuit conditions which may include specified operating overload conditions and also carrying for a specified time currents under 
specified abnormal circuit conditions such as those of short-circuit.

A load switch may have a short-circuit making capacity, however it does not have a short-circuit breaking capacity  
(IEC 60947-1 and -3). Short-circuit currents can be conducted (high short-circuit withstand capacity), but not be switched-off.

For load switches the range of designs is similarly wide as for isolator switches, for example “normal” (load) switches, fuse-switches, 
circuit breakers. Fuse-switches are not legally permitted in all countries.

2.2.1.3 Switch disconnectors
Switch disconnectors combine the properties of (load) switches and disconnectors.

In this case, too, there are a variety of designs such as “normal” switch disconnectors, fuse-switch-disconnectors and circuit breakers. 
Fuse-switch-disconnectors are not legally permitted in all countries.

2.2.1.4 Circuit breakers
See also Section 4.2.2. Circuit breakers are mechanical switching devices, capable of making, carrying and breaking currents under 
normal circuit conditions and also making, carrying for a specified time and breaking currents under specified abnormal circuit 
conditions such as those of short-circuit (IEC 60947-2). They thus also fulfill the requirements of (load) switches. Circuit breakers are 
often designed so that they can fulfill the requirements for disconnectors.

2.2.1.5 Supply disconnecting devices
IEC 60204-1 (Machine safety – Electrical equipment of machines) requires a supply disconnecting (isolating) device for each incoming 
source of supply and for each on-board power supply that completely isolates the machine or the device from the external or internal 
power supply for the machine, so that cleaning, maintenance and repair work can be carried out or the machine can be shut down for 
longer periods of time.

 - A supply disconnecting device must fulfill the requirements of a switch-disconnector as defined in IEC 60947-3 (load  
  switch with isolating function) and at the least fulfill the requirements of utilisation categories AC 23B or DC 23B. 
  Disconnectors are permitted if load shedding is assured by an auxiliary contact before opening of the main contacts of the 
  disconnector.  Also circuit breakers with isolating function or other switchgear with isolating function and motor switching   
  capacity can be  used as supply disconnecting devices, provided that they fulfill the corresponding IEC standards.

 - A supply disconnecting device must be manually actuated and have unambiguous “ON” and “OFF” positions that are  
  clearly marked with “О” and “I”.

 -  A supply disconnecting device must either have a visible contact gap or a position indicator which cannot indicate OFF   
  (isolated) until all contacts are actually open and the requirements for the isolating function as specified under IEC 60947-3   
  have been satisfied.

 -  If the supply disconnecting device does not simultaneously serve as EMERGENCY STOP device, it may not have a red 
  handle (preferred colors black or grey).

 -  It must be possible to lock the handle in the “OFF” position (for example with a padlock).
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 -  The supply-side terminals of supply disconnecting devices must be equipped with a finger protection anti-tamper shield   
  and a warning sign.

If required, supply disconnecting devices may be equipped with a door interlock device.

The power supply of the below circuits does not necessarily have to be controlled via the supply disconnect switch:

 -  Lighting circuits that are required for maintenance work

 -  Sockets that are exclusively used for service equipment such as drills.

The requirements for supply disconnect switches can be fulfilled by switch-disconnectors, fuse-switch-disconnectors and circuit 
breakers.

2.2.1.6  Supply disconnecting EMERGENCY STOP devices
If there is a real and present danger for man or machine, the dangerous parts of the machine or the entire machine must be 
disconnected from the power supply by actuation of an EMERGENCY STOP device as quickly as possible and brought to a standstill. 
According to IEC 60204-1 supply disconnecting devices are acceptable as local EMERGENCY STOP devices as long  
as they are easily accessible for operating personnel. The below conditions must also be fulfilled:

 -  For use as an EMERGENCY STOP device the handle must be red and on a yellow back-ground.

 -  The device must be simultaneously able to interrupt the locked-rotor current of the largest connected motor plus  
  the sum of the rated currents of the remaining loads. 

 -  It must be able to conduct the total rated operational current of all connected devices.

 -  The EMERGENCY STOP switch may not break those circuits that could lead to endangerment of the personnel or  
  the machine.

2.2.1.7 Summary supply disconnect and EMERGENCY STOP devices

Tab. 2.2 1

Summary of requirements on switches for use as supply disconnect devices and supply disconnect/EMERGENCY STOP devices

2.2.1.8 Fuses
Fuses have a short-circuit breaking capacity and in the form of full-range fuses are also suitable for overload protection of conductors 
and certain loads. For details see Section 4.2.1.

2.2.1.9 Devices for thermal protection
See Sections 4.1.2, 4.2 and 4.2.4.

Devices for thermal protection are divided into two groups:

	 •	 Devices	that	evaluate	the	thermal	risk	to	the	protected	object	and	provide	a	protective	disconnection	in	one	unit	(for		 	
  example full-range fuses, MCB’s, circuit breakers, motor-protection circuit breakers, electronic motor control devices with   
  integrated motor protection) and

	 •		 Devices	that	exclusively	evaluate	the	thermal	risk	to	the	protected	object	but	for	protective	shutdown	control	a	power		 	
  switching device (usually a contactor). These include for example overload relays and thermistor (PTC) protection devices.

Requirements on supply disconnect devices 
(under IEC 60204-1)

Supply disconnect 
devices

Supply disconnect/
EMERGENCY STOP devices

Operator handle: 

- Black or grey handle yes no

- Red handle with yellow background no yes

- Lockable yes yes

Manual actuation from outside yes yes

Easily accessible yes yes

Only one “ON” and “OFF” position yes yes

Position indicator only “О” and “I” yes yes

Lockable in “О” position from outside yes yes

Touch-protected input terminals with warning symbol yes yes
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Rated isolation voltage Ui 2.3.1 P P P P P
Rated operational voltage Ue (<Ui) 2.3.2 P P P P P
Rated impulse withstand voltage Uimp 2.3.3 P P P P
Rated operational current Ie 2.3.2 P P P P P
Utilisation category 2.3.2 P P P P
Short-circuit withstand capacity / short-circuit protection 2.3.4 P P P
Rated short-circuit making capacity Icm 2.3.4.6.1 P P
Rated short-circuit breaking capacity Icu, Ics 2.3.4.6.2 P P

Cut-off current 2.3.4.2
2.3.4.4 C C

Let-through energy (Joule integral) 2.3.4.1
2.3.4.4 C C

Rated short time current Icw 2.3.4.3 C C C
Short-circuit coordination
(Type 1, Type 2) with fuses or circuit breakers

2.3.4.5.2 P

Thermal load 2.3.5 P P P P
Ambient temperature 2.3.5.1 C C C C C
Operational overcurrents 
(for example heavy-duty starting)

2.3.5.2 C C C C C

Life span 2.3.6 C C
Frequency of operation 2.3.7 C C

Rated frequency / harmonics 2.3.8
2.4.3 C C C C C

Safety clearances 2.3.9 P P P
Mounting position 2.3.10 C C
Pollution degree 2.3.3 A A A A A
Overvoltage category 2.3.3 A A A A A
Protective separation 2.3.11 A A A A A
Site altitude 2.3.12 A A A A A
Shock and vibration 2.3.13 A A A A A

Humidity / climatic loading A A A A A

Chemical ambient influences A A A A A

Radioactive radiation A A A A A

UV radiation A A A A A

External form / IP degree of protection A A A A A

Tab. 2.3 1
Selection criteria for low-voltage switchgear for main circuits
P … Primary selection factors  C … Complementary selection factors  A … Additional criteria

2.2.1.10 Contactors
Contactors are designed for operational switching and - in accordance with the required high mechanical and electrical life span 
- use relatively low contact forces. Accordingly they have no short-circuit switching capacity and must be protected against the 
effects of short-circuit currents by series-connected short-circuit protective devices. See Section 2.3.4.5.

2.3 Parameters for the correct selection and sizing
For the specific application of low-voltage devices additional parameters should be taken into account such as for example the 
application ambient temperature, the expected device life span, any influences from moisture, mechanical impacts and vibrations 
etc., to name only a few of the most important. Tab. 2.3 1 provides a summary of the most important parameters when selecting 
devices. Some of the specific features are looked at in more detail below. 
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2.3.1 Rated isolation voltage Ui

Ui is the voltage on which the selection of creepage distances of electrical equipment and the dielectric tests are based. Ui must 
always be bigger than (or at least the same as) the voltage that is applied to the electrical equipment and is thus always larger 
than or the same size as the rated operational voltage Ue. With the selection of Ue is thus Ui (in the responsibility of the device 
manufacturer) correctly selected, whereby the pollution degree and the overvoltage category should be taken into account.

2.3.2 Rated operational voltage Ue, rated operational current Ie and utilisation category
The rated operational voltage Ue is always to be considered in association with the corresponding rated operational current Ie and 
the utilisation category. These three variables determine the suitability of an item of electrical equipment for a certain application. 
For utilisation categories see Section 1.1.

Corresponding to the universal applicability, an item of electrical equipment can be assigned a variety of different datasets 
(for example IeAC-3 for various operational voltages or IeAC-3 and IeAC-4 for a certain operational voltage). Common values for rated 
operational voltages for switchgear can be seen in Tab. 2.3 2. With 3-phase supply systems, the delta (phase to phase) voltage of 
the power supply applies. 

 
Supply voltages

Supply voltages for three-phase 
4-wire or 3-wire systems

d.c.
V

a.c.
 V

50 Hz
V

60 Hz
V

6 6

12 12

24 24

36

48 48

60

72

96

110 110 120/208

220 230 230/400 240

277/480

440 400/690 347/600

600

1000

Tab. 2.3 2

Preferred rated voltages for supply systems in accordance with IEC 60038 ed. 6.2 and industrial practice (L-N/L-L). Copyright © IEC, 
Geneva, Switzerland. www.iec.ch

2.3.3  Rated impulse withstand voltage Uimp

The rated impulse withstand voltage Uimp is a measure for the dielectric strength. From the point of view of the user it is important, 
as the required dielectric strength among other things depends on the pollution degree of the installation site and the overvoltage 
category, i.e. the proximity to the feeding supply network. With respect to the pollution degree see Tab. 2.3 3. Tab. 2.3 4 shows as an 
excerpt from Table H.1 of IEC 60947-1 Annex H the influence of the overvoltage category on the applicable impulse withstand voltage 
Uimp. The rated impulse withstand voltage is for example important in circuit breakers that are often deployed on the distribution level 
or also on the supply level.
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 6.1.3.2     Pollution degree
The pollution degree (see 2.5.58) refers to the environmental conditions for which the equipment is intended.

NOTE 1: The micro-environment of the creepage distance or clearance and not the environment of the equipment determines the 
effect on the insulation. The micro-environment might be better or worse than the environment of the equipment. lt includes all 
factors influencing the insulation, such as climatic and electromagnetic conditions, generation of pollution, etc.

For equipment intended for use within an enclosure or provided with an integral enclosure, the pollution degree of the 
environment in the enclosure is applicable.

For the purpose of evaluating clearances and creepage distances, the following four degrees of pollution of the micro-
environment are established (clearances and creepage distances according to the different pollution degrees are given in Tables 
13 and 15):

Pollution degree 1:

No pollution or only dry, non-conductive pollution occurs.

Pollution degree 2:

Normally, only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation may 
be expected.

Pollution degree 3:

Conductive pollution occurs, or dry, non-conductive pollution occurs which becomes conductive due to condensation.

Pollution degree 4:

The pollution generates persistent conductivity caused, for instance, by conductive dust or by rain or snow.

Standard pollution degree of industrial applications:

Unless otherwise stated by the relevant product standard, equipment for industrial applications is generally for use in pollution 
degree 3 environment. However, other pollution degrees may be considered to apply depending upon particular applications or 
the micro-environment.

NOTE 2: The pollution degree of the micro-environment for the equipment may be influenced by installation in an enclosure.

Standard pollution degree of household and similar applications:

Unless otherwise stated by the relevant product standard, equipment for household and similar applications is generally for use in 
pollution degree 2 environment.

Tab. 2.3 3

Pollution degree according to IEC 60947-1 ed. 5.0.

Copyright © IEC, Geneva, Switzerland. www.iec.ch
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Maximum 
value of rated 

operational
voltage to earth

A.C. r.m.s. or D.C.
V

Nominal voltage of the 
supply system 

(≤ rated insulation 
voltage of the  

equipment)
A.C. r.m.s. 

V

Preferred values of rated impulse withstand
voltage (1,2/50 μs) at 2 000 m

kV

IV III II I

Origin of 
Installation 

(service entrance) 
level

Origin of 
Installation 

(service entrance) 
level

Load  
(appliance, 
equipment)  

level

Specially 
protected level

300 220/380, 230/400, 
240/415, 2607440

277/480

6 4 2.5 1.5

600 347/600, 380/660, 
400/690, 415/720

480/830

8 6 4 2.5

1000 - 12 8 6 4

Overvoltage category

Tab. 2.3 4

Correspondence between the nominal voltage of the supply system and rated impulse withstand voltage of the device with protection 
by surge-arrestors according to IEC 60099-1

Excerpt from Table H.1 of IEC 60947-1 ed. 5.0 Annex H

Copyright © IEC, Geneva, Switzerland. www.iec.ch

2.3.4 Short-circuit withstand capacity and short-circuit protection
See also Section 4.1.3.

Adequate protection against the consequences of a short-circuit is one of the most fundamental safety measures for electrical 
equipment. This affects both the protection of persons as well as of property. For operational reasons it is often desirable that devices 
survive short-circuits largely unscathed so that they may become operational again as quickly as possible afterward.  
The specification of coordination types for starters is also related to this requirement.

The short-circuit withstand capacity of electrical equipment is usually defined by stating the largest permitted short-circuit protective 
device (for example permissible fuse or permissible circuit breaker). Current limiting fuses and modern current limiting circuit breakers 
make a major contribution to the economical rating of devices, as they strongly reduce the thermal and dynamic loading of devices 
and equipment connected downstream.

Loading in the event of a short-circuit is defined by the Joule integral (I2t value), the cut-off current (ID) and the short-time  
current (Icw).
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Fig. 2.3 1

Basic characteristic of current and voltage when clearing a short-circuit with a current limiting circuit breaker

u System voltage

uB Electric arc voltage

ip Prospective peak short-circuit current

iK Limited short-circuit current

iD Cut-off current

t0 Inherent system delay 

tV Electric arc hesitation time

tA Rise time

tK Total break time 

2.3.4.1 Joule integral I2t
The I2t-value is a measure of the thermal loading of the electrical equipment in the shorted circuit. Fuses and current limiting circuit 
breakers limit the short-circuit current to values significantly below those of the uninfluenced current and thus reduce the thermal 
loading of the devices in the shorted circuit, for example of the contact system of a contactor connected downstream. The rule of 
thumb is that the Joule integral of the short-circuit protective device must be smaller than the permissible  I2t-value of the conductor 
and of the electrical equipment to be protected.

2.3.4.2 Cut-off current ID

The cut-off current is the largest instantaneous value of the current that a current limiting short-circuit protective device allows 
through. As the action of the force of the electrical current is proportional to the square of the current, the cut-off current is critical 
in ensuring the required mechanical strength of connected electrical equipment. This is particularly relevant for the design of bus 
systems (number and strength of the supports). IEC 60439 takes this circumstance into account by dispensing from the requirement of 
verification of the short-circuit withstand capacity for cut-off currents ≤ 17 kA.

2.3.4.3 Rated short-time withstand current lCW

Like the Joule integral, the short-time withstand current lCW is a measure of the thermal load capacity. It is important for circuit breakers 
of category B (suitable for selectivity) and is usually stated as the 1s-current (preferred values under IEC 60947-2 are 0.05, 0.1, 0.25, 0.5 
and 1 s). A conversion of lCW currents for other durations is permitted according to the equation

 Icw1
2 · t1 = Icw2

2 · t2 = const. 

The lCW-value is of importance when for selectivity reasons the breaking action of circuit breakers is delayed. The circuit breakers in the 
shorted circuit must be able to carry the short-circuit current until the delay time has expired and then shut down the shorted circuit. 
For circuit breakers with In ≤ 2500 A, IEC 60947-2 requires lCW ≥ 12 ∙ In, at least 5 kA. For In > 2500 A CW ≥ 30 kA is required.
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2.3.4.4 Current limiting protective equipment
If the short-circuit withstand capacity of electrical equipment is lower than the prospective short-circuit current at the  
installation site, its loading must be reduced in the case of a short-circuit by upstream current limiting protective equipment  
to the permissible magnitude. For this purpose fuses or current limiting circuit breakers may be chosen.

The  I2t- and iD-values of this protective equipment are – usually in diagrams – stated as a function of the prospective short-circuit 
current Icp (see example Fig. 2.3 2). It should be noted that these quantities vary with the operating voltage. For fuses,  
limit-curves can be found in the diagrams for the cut-off current for the largest and without direct current component (see example 
Fig. 2.3 3). As the time of occurrence of a short-circuit is coincidental, the cut-off current for the largest direct current component is 
critical for engineering (i.e. most unfavourable time point of occurrence of the short-circuit).

    

Fig. 2.3 2

iD-values and I2t-values as a function of the prospective short-circuit current Icp

When the cut-off current is limited to ≤ 17 kA, in accordance with IEC 60439-1 no verification of the short-circuit withstand capacity for 
the downstream circuits is required. This relates in particular to the mechanical strength of the conductors.  
For the protection of electrical equipment (for example of motor starters) smaller cut-off currents may also be required.
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Fig. 2.3 3

Example of an iD -diagram for fuses as a function of the prospective short-circuit current Icp

1) Peak short-circuit current without direct current component 
2) Peak short-circuit current with maximum direct current component

2.3.4.5 Coordination of electrical equipment
The coordination of electrical equipment refers to the assignment of short-circuit protective devices to contactors or starters with 
respect to the effects of a short-circuit on these devices. Distinction is made between two types of coordination: 

 -  The coordination of the trip characteristic of the overload relay (if present) with the protective characteristic of the   
  short-circuit protective device in respect of the switching capacity of the contactor

 -  The coordination between the short-circuit protective device, the contactor and the overload relay with respect to  
  the destructive effect of a short-circuit and their operability afterward.

2.3.4.5.1  Coordination in respect of the switching capacity of the contactor (overcurrent selectivity)
The coordination between the release characteristic of the overload relay and the short-circuit protective device takes account of 
the switching capacity of the contactor. Contactors are designed for the operational switching of loads and are not able to switch-
off currents of short-circuit level. The coordination of the devices must ensure that for currents above the switching capacity of the 
contactor the short-circuit protective device shuts down before the overload relay is responding and dropping-out the contactor  
(Fig. 2.3 4 and Fig. 2.3 5).

  

Fig. 2.3 4

Types of load feeders (with electromechanical switchgear)

a) Fuse, contactor, motor protection relay.   d) Operational switching and circuit breaker function 
b) Circuit breaker with magnetic release, contactor, motor protection relay combined in one contact system 
c) Circuit breaker with motor protection characteristic, contactor.

a) b)M3~ M3~ M3~c) d) M3~

I > I >

I >

Fig. 2.3-4

M3~
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For starters that are protected by circuit breakers with motor protection characteristic, no coordination with respect to the overcurrent 
selectivity is required, as circuit breakers switch-off in the event of overloads and short-circuits.

 

Fig. 2.3 5

Short-circuit coordination of switching and protective devices. Circuit breakers with motor protection characteristic are used as an 
alternative to fuse/overload relay.

1  Motor starting current

2  Trip characteristic overload relay 

3  Destruction limit curve overload relay 

4  Trip characteristic circuit breaker with motor protection characteristic

5  Time/current-characteristic fuse (alternative to circuit breaker)

6  Rated breaking capacity of the contactor

7  Welding area of the contactor

2.3.4.5.2  Coordination with respect to the operability after a short-circuit

The coordination of contactor and overload relay, if any, with a short-circuit protective device with respect to the operability of starters 
after a short-circuit is determined by the destructive or damaging effect of the short-circuit current on the starter components. Basic 
requirement – regardless of coordination type – is that neither persons nor equipment may be endangered.

 - Coordination type 1 permits damage to the starter so that further operation may only be possible after repair or   
  replacement.

 - With coordination type 2 the contactor or starter must be suitable for further use after the short-circuit. Slight welding   
  of contacts is acceptable. An early replacement of the starter components is usually required (depending on the severity   
  of the short-circuit) due to the erosion of contact material by the short-circuit current, however this can be carried out at   
  an operationally convenient time.

 - Coordination type “CPS” requires in accordance with IEC 60947-6-2 that a load feeder continues to be usable after a   
  short-circuit, in order to maximise operational continuity. The guaranteed residual electrical life span based on a new 
  device is 6000 cycles. In this case too, the replacement of the starter components as in coordination type 2 is required  
  and  may be carried out at a time that is convenient from an operational viewpoint. Load feeders under coordination  
  type “CPS” can be realised in any design (see also Fig. 2.3 4).
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Type “1” Type “2” Type “CPS”

Finding and rectifying cause of short-circuit X X X

Checking starter X X

Replacing devices X 1) 1)

Separating welded contacts, if any X

Resume operation X X X

Planned maintenance (device replacement) X X

Tab. 2.3 5

The selection of the coordination type with respect to duration of the interruption to operation
1) Replacement of fuses, if used

2.3.4.6 Short-circuit switching capacity
The switching capacity is the r.m.s value of a current at a given power factor cos φ as well as a given rated voltage at which a 
switchgear or a fuse can still shut-off under specified conditions in an operationally safe way. Both the short-circuit making capacity 
as well as the short-circuit breaking capacity of circuit breakers must be larger than or equal to the prospective short-circuit current 
at the place of installation. If this is not the case, then a suitable backup protection (for example a fuse) should be provided to ensure 
the required switching capacity of the device-combination. Data regarding devices for backup protection are given in the technical 
documentation.

2.3.4.6.1  Rated short-circuit making capacity ICM

The rated short-circuit making capacity Icm is a quantity that according to regulations must be in a certain ratio to the rated ultimate 
short-circuit breaking capacity Icu and that has to be guaranteed by the device manufacturer. This is not a variable that must be 
considered by the user, however it ensures that a circuit breaker is in the position to connect onto a short-circuit – and to disconnect it 
subsequently.

2.3.4.6.2  Rated short-circuit breaking capacity ICU and ICS 

IEC 60947-2 makes distinction between the rated ultimate short-circuit breaking capacity  ICU and the rated service short-circuit 
breaking capacity ICS:

 -  Rated ultimate short-circuit breaking capacity ICU:

  ICU is the maximum breaking capacity of a circuit breaker at an associated rated operational voltage and under specified   
  conditions.  ICU is expressed in kA and must be at least as large as the prospective short-circuit current at the site of   
  installation. 

  Circuit breakers that have switched-off at the level of the ultimate short-circuit breaking capacity, are reduced    
  serviceable  afterwards and should at least be checked regarding functionality. There may be changes in the overload   
  trip characteristic and increased temperature rise due to the erosion of contact material. 

 -  Rated service short-circuit interrupting capacity ICS: 

  ICS values are usually lower than the values for  ICU. Circuit breakers that have been switching-off at the level of the   
  service  short-circuit breaking capacity continue to be serviceable afterward. In plants in which interruptions to   
  operations must be kept as short as possible, product selection should be carried-out based on ICS.

 -  Breaking capacity of fuses

  The same applies to fuses as to circuit breakers with respect to the  ICU : at the given rated operational voltage, the rated   
  breaking capacity must be at least as large as the prospective short-circuit current at the site of installation.

2.3.5 Thermal protection
Compliance with the permissible operational temperatures of electrical equipment is both a vital safety factor as well as critical 
regarding its effective life span. The rate of ageing of plastics increases exponentially with their operational temperature.

For all electrical equipment, limiting values for the load currents are defined, compliance with which should be ensured by suitable 
protective devices and measures (fuses, overload relays, temperature sensors).

2.3.5.1 Ambient temperature
Electrical equipment is designed for operation in defined temperature ranges. The upper temperature limit is of special importance, 
because practically all electrical equipment dissipates power and hence produces heat. The selection of the devices must consider the 
device’s ambient temperature and the permitted load at this temperature.
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The normal ambient temperature range under IEC 60947, IEC 60439 and IEC 60204 is –5 °C to +40 °C with a 24-hour average that 
does not exceed +35 °C. It should be noted that the rated values of the current load capacity unless otherwise stated are related to 
an ambient temperature of +40 °C. With other (higher) temperatures the loads should be reduced in accordance with manufacturer 
specifications or larger devices should be chosen. For industrial switchgear, loading specifications are often provided for an ambient 
temperature of +55 or +60 °C.

The lower limit of the operational temperature may be critical with electronic devices and it should be assured by provision of 
heating that temperature does not fall below. In conjunction with moisture (freezing), low temperatures can also adversely affect the 
operability of electro-mechanical devices.

Rated operational values designated as “open” apply for devices used in free air, while values designated “enclosed” apply for devices 
installed in an enclosure of small size specified by the manufacturer. The reference ambient temperature for “open” is the temperature 
of the ambient air of the device, even if this is installed in a box or cabinet. The reference ambient temperature for “enclosed” is the air-
temperature of the housing environment. The ambient temperature of the device in the housing is higher because of the effect of its 
own heat dissipation. In practice this means for example that for a contactor “open” at 60 °C Ith = 20 A will be stated and “enclosed” at 40 
°C the same value, because due to heating in the housing the contactor is subjected to the same immediate ambient temperature of 
60 °C. At 40 °C “open” the same contactor can for example conduct 25 A.

In switchgear, in which the temperature in the cabinet (see Software TRCS) is calculated or measured, the data for “open”, that is in 
the immediate device environment (microclimate) should be taken into account when selecting the devices. It should be ensured 
by temperature monitoring and cooling measures that the actual temperature does not exceed the reference value on which the 
component selection is based.

2.3.5.2 Operational overcurrents, heavy-duty starting
Operational overcurrents occur especially when motors are started. Switchgear such as contactors or load switches should be rated 
so that it can cope with the regularly occurring overcurrents without difficulty, assuming it has been selected in accordance with the 
corresponding utilisation category. Motor starts that cause normal motor protection relays of trip class 10 (tripping between 4 and 10 s 
at 7.2 · Ie) to trip are considered as heavy-duty starts. In these cases overload protective relays with slower trip characteristics should be 
selected. See also 1.7.1.2.1.

In addition the load capacity of the switchgear should be checked.

The load capacity of contactors and circuit breakers without thermal release basically depends on their size (cross-section/mass of 
the conducting parts). It therefore varies from device to device. Up to a starting time of around 10 s for direct starting, the load of 
the devices during starting needs not to be checked. Furthermore the admissible load capacity can be obtained from the technical 
documentation (catalogue, RALVET; see example Fig. 2.3 6). Rest times should be allowed between successive heavy-duty starts that 
provide sufficient time for the switchgear (see RALVET) and the motor to cool down before the next loading.

 

Fig. 2.3 6

Example of a loading diagram for contactors for heavy-duty starting of squirrel-cage induction motors

Contactor size I e(AC-3)
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2.3.6 Life span
The life span of switchgear basically depends on the size of the load and the number of switching cycles. Instead of a time span, with 
electromechanical switchgear reference is usually made to the number of operations, as the ageing mainly depends on the stress 
during switching and less on the on- and off-phases between. The maximum number of operations is usually determined by the wear 
of heavily loaded components – in contactors, load switches and circuit breakers especially of the contact system.

For switchgear, the mechanical and electrical life spans are separately defined. The mechanical life span states the number of possible 
operations without electrical loading, while the electrical life span states the number of operations for a certain size of electrical 
loading and a certain utilisation category.

In electronic devices, the life span is usually less dependent on the number of operations but rather on the working temperature.  
Thus for example electrolytic capacitors (for example used in power adapters) age more quickly at higher temperatures. This is why it  
is recommended to install electronic devices in the cooler parts of switch cabinets.

Ageing is also a problem with fuses, especially in the context of switching of motors. Full-range fuses (gL, gG) have a soldered joint for 
tripping in the overcurrent range that may age due for example to repeated short-term melting. When using them with motors with 
the latters’ high starting currents, it should therefore be ensured that the starting current does not raise the temperature of this solder 
joint beyond a certain limit. Fuse manufacturers provide information on the smallest fuses that can be selected in relation to given 
motor currents and starting times.

2.3.6.1 Prospective service life
The prospective service life of switchgear is the number of years, months or weeks that it should complete under the foreseen service 
conditions in 1-, 2- or 3-shift operation without the replacement of spare parts. It depends on the frequency of operation and the total 
number of individual switching operations. For the latter in addition to the mechanical also the electrical life span of the devices must 
be selected accordingly (see Section 2.3.6.3). The required parameters can be determined by means of the below formular:

 

 

 

ntot Total number of operations (life span)

fS Switching operations per hour

hD Operating hours per day

dY Operating days per year

nY Number of years (life span)

2.3.6.2 Mechanical life span
The mechanical life span of switchgear is the total number of possible switch operations without electrical switch loading. It depends 
on the design, the masses moved, the forces and accelerations occurring. Large load switches and circuit breakers operate with high 
contact forces and large masses, and therefore have a comparatively short mechanical life span. On the other hand, contactors operate 
with relatively small contact forces and thus achieve longer mechanical life spans.

After the mechanical life span has expired, the devices must be replaced. This life span is only rarely achieved during the foreseen 
service life. In a few cases, where the complete mechanical life span has to be used, it should be ensured that it is not reduced by 
adverse ambient conditions, installation position and – in the case contactors – by an excessive control voltage.

2.3.6.3 Electrical life span
The electrical life span for switchgear is the number of possible switching operations under operational conditions. After this number 
has been reached, the parts subject to wear must be – wherever possible – replaced. With small devices, the entire device must be 
replaced.
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Depending on the application, the loading and the resulting erosion of the contacts varies widely. This is influenced by the following 
conditions, whereby the first mentioned play the dominant role:

 - Breaking current

 - Making current

 - Voltage

 - Power factor cos φ with alternating current

 - Time constant τ with direct current

 - Frequency of operation

 - Malfunctions in the plant and on other devices (contact chatter)

 - Ambient conditions (climate, temperature, vibrations)

Usually the electrical life span determined under test conditions is presented in diagrams as a function of the rated operational current. 
These values may generally be used without hesitation in contactor selection. In practical operation, the loads are usually lower, as 
the running motor usually carries a current that is below the rated operational current. In the case of longer inching operation, the 
starting current has already dropped somewhat by the time the motor is switched-off. This usually compensates for the effect of any 
disregarded adverse conditions.

For the most common applications of contactors the electrical life span is presented in the product documentation with various 
diagrams:

 - AC-1   Non-inductive or slightly inductive loads, for example resistance furnaces

  (small making current and cos φ higher than with AC 3, however full recurring voltage on switching off )

 - AC-3  Squirrel-cage induction motors: Starting, switching off motors during running (high making current, breaking   
  of the motor rated current)

 - AC-2  Slip-ring motors: Starting, switching off

 - AC-4 Squirrel-cage motors: Starting, plugging, inching (high making and breaking current at full voltage)

 - Mixed service of slip-ring motors, e.g.

  AC 390 %

  AC 4

With the curves Fig. 2.3 7 for AC 3 and Fig. 2.3 8 for AC 4 the expected electrical life span for specific applications can be determined. 
These curves also can be used to determine the electrical life span for any application (for example jogging motors with very high or 
especially low starting current and any mixed service).

 

Fig. 2.3 7

Example of a diagram for determining the electrical life span of contactors as a function of the rated operational current Ie for 
utilisation category AC 3. 

The diagram applies up to 460 V, 50/60 Hz. 

Contactor size I e(AC-3) [A]
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Example

Background:

Squirrel-cage induction motor 7.5 kW, 400 V, 15.5 A, A 3 (switching off only when running), operating cycle 2 minutes ON / 2 minutes 
OFF, 3-shift operation, expected service life 8 years.

Objective:

Selection of the contactor 

Solution:

2 min ON + 2 min OFF = 15 switching operations/h. This results for 3-shift operation over 8 years in around 1 million switching 
operations.

From diagram Fig. 2.3 7 yields for a rated operational current of 15.5 A and 1 million required switching operations the contactor C16 
(electrical life span approx. 1.3 million switching operations).

Fig. 2.3 8

Example of a diagram for determining the electrical life span of contactors as a function of the rated operational current Ie for utilisation 
category AC 4.  
The diagram applies up to Ue=690 V, 50/60 Hz. 

Example

Background:

Squirrel-cage induction motor 15 kW, 400 V, 29 A, plugging, switching off rotor at standstill at 

IA = 6·Ie, expected life span = 0.2 million switching operations.

Objective:

Rating of starting and braking contactors.

Solution:

The starting contactor (circuit making only) is selected according to the maximum permitted rated power at AC 3 (see Fig. 2.3 7): 30.

The brake contactor is selected according to the maximum permitted rated operational power at AC 4 and 0.2 million switching 
operations according to Diagram Fig. 2.3 8: 72.

For mixed service, i.e. service of the contactor with AC 3 and AC 4 switching operations, the life span results from the sum of the 
loadings. In the catalogues, diagrams for certain %-rates of AC 4 operations, for example 10 %, are provided. The RALVET electronic 
documentation is available for determining the life span for other percentage rates, or direct inquires must be made.

  Contactor size Ie(AC‐3) [A ] 
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If in practice the electrical life span was considerably shorter than desired, there are several possible causes and explanations:

 - More switching operations than expected, e.g. operated by extremely sensitive controller.

 - More frequent inching than expected, e.g. unskilled operation.

 - Permitted frequency of operation exceeded, e.g. chattering contacts

 - Short-circuits, e.g. switching pause too short for reversing or star-delta starters.

 - Synchronisation with the supply voltage. Semiconductors as controllers could for example always switch off at the   
  same  phase angle and act in the same direction of current-flow (results in one-sided material migration to the contacts   
  like in direct current control).

Assessment of the contacts

In conjunction with the electrical life span, the question often arises of assessment of contacts after a certain service period for 
continued serviceability. At least with large contactors, the contacts can be inspected.

Already after the first few switching operations, there are clear signs of burn-off on the contact surface. After a relatively small number 
of switching operations, the entire contact surface becomes roughened and blackened. Black deposits and traces of arc extinction can 
be seen on the surrounding components. Serrated edges and loss of contact material toward the arcing chamber are also normal.

The end of the contact life span is really reached when larger areas of the contact plating have broken off or there is a danger of the 
contact touching the substrate material. The below figures are intended as an aid for an assessment of contacts.

 

     

 

 

Fig. 2.3 9

Contacts of a power contactor at various stages of the life span with AC-3 loading

Fig.s above:  Contacts in new state

Fig.s in center:  Contacts after approx. 75 % of the electrical life span; Contact material partially eroded;    
 contacts still operable

Fig.s below: Contacts at the end of their life span; Substrate material visible, contact material eroded down to the substrate;   
 further use would lead to contact welding and excessive temperature rise.

The pictures on the right show the contact state in long section. The images of the various life span phases originate from various 
contacts, as the contacts can no longer be used once the section has been cut.

A

B
Sectional 

views

B
A
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2.3.7 Intermittent and short-time duty, permissible frequency of operation
With continuous duty, i.e. with constant loading over hours, days and longer, the switchgear reaches its thermal equilibrium. The 
individual components reach their steady-state tempera-tures. The rated loading values refer from a thermal view point to continuous 
duty at a certain ambient temperature (see Section 2.3.5). IEC 60034-1 defines the continuous duty of motors at the rated operational 
current until the steady-state temperature is reached as the rated service type S1.

In practice in addition to the continuous duty there is a large number of loading situations with changing loads. In intermittent 
operation, load-phases and de-energised breaks alternate in regular sequences. The load periods and intervals are so short that the 
components of the switchgear (and of the load) do not reach their thermal equilibrium neither during the warming nor the cooling 
phases. For motors the three rated service types S3, S4 and S5 are defined for intermittent operation in IEC 60034-1  
(S3…constant load; S4…with additional starting load; S5…with additional starting and braking load).

 

Fig. 2.3 10 
Current loading and temperature rise during intermittent duty

IS4 Current loading during intermittent duty S4

ΔδS4 Heating and cooling during intermittent duty S4

For meaning of other symbols see Fig. 2.3 11 

In short-time duty the current flows for a limited time so that steady-state temperature is not reached. The de-energised interval after 
the load-period is however so long that the devices can nearly cool down to the ambient temperature. In IEC 60034-1 the short-time 
duty for motors is named rated service type S2.

 

Fig. 2.3 11  
Current loading and temperature rise in short-time duty S2
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tB Load duration

tL De-energised interval

tS Duration of a switching cycle

Ith Thermal continuous current

IS2 Current loading with short-time duty

Δδmax Maximum permissible temperature rise

ΔδS1 Temperature rise with thermal continuous current

ΔδS2 Heating and cooling with short-time duty

Comment: In short-time duty a higher temperature than in continuous duty is permitted!

With intermittent or short-time duty, the loading current can be higher than in continuous duty, without resulting in the permitted 
temperature being exceeded. Therefore, for example, for switching ohmic loads and rotor contactors for slip-ring motors smaller 
contactors can be selected than would be required according to the rated current of the load.

When switching squirrel-cage induction motors, transformers, capacitors and incandescent lamps, the required contact rating is 
however the main selection criterion. The size of contactors for these applications is therefore determined by the rated operational 
current and the respective utilisation category for all service types.

2.3.7.1 Intermittent duty and relative ON-time
In order to define a specific intermittent duty, in addition to the value of the current either the load and cycle time or the frequency of 
operation per hour together with the relative ON-time are preferably stated.

 

Fig. 2.3 12

Intermittent duty 

 

IS Average current loading (r.m.s. value during a switching cycle and hence also during 

 the whole service time) [A]

IB Current during period under load [A]

tB Load duration [s]

tS Switching cycle = load duration + de-energised interval [s]

ED relative ON-time = tB/tS [%]

The relative ON-time – usually expressed as a percentage – is the ratio of the load duration to the cycle-time, whereby the  
cycle-time is the sum of the load duration and the de-energised interval.     

The average current loading IS must always be somewhat lower than the thermal continuous current, so that the temperature rise 
peaks at the end of each period under load do not exceed the permitted values. With stator contactors of slip-ring motors, especially 
with short switching cycles, the higher current during the starting time (see Fig. 2.3 10) as well as the additional heating effect of the 
electric arcs must be taken into account.

At high frequency of operation the heating effect of the starting current and the switching arc is greater than the cooling effect of the 
de-energised intervals so that contactors with higher ratings must be chosen than would normally be required according to the rated 
operational current. The selection is made based on the graphs for the permissible frequency of operation.

 

tS 

tB 

IB 
IS 
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Even without electrical loading, the frequency of operation of contactors is limited by the maximum permissible temperature of the 
coil or the electronic coil control circuit, if any. The in-rush currents of the coil (Fig. 2.3 13) make a considerable contribution at higher 
frequencies of operation to the overall heating of the coil and of the contactor. This applies both for alternating current and for direct 
current magnets with series resistance or contactors with double-winding-coils (economy circuit) and also to electronic coil control 
circuits.

 

Fig. 2.3 13 
Coil current at closing a contactor a.c. magne 

IS Rated current of coil

IS1 Inrush current of coil (depending on contactor 6... 15 ∙ IS)

T1 ON-command (coil circuit closed)

T2 Magnet closed

The permissible frequency of operation of conventional coils can be exceeded short-time without risk, as the time constants for the 
heating of coils is 5 to 20 minutes depending on contactor size.

True direct current magnets do not exhibit in-rush currents. Therefore with these the ON and OFF delay times, which in this case are 
notably longer, determine the maximum frequency of operation.

With electronically controlled coils, the permissible frequency of operation is determined by the thermal load capacity of the 
electronic components and may not be exceeded.

With electrical loading, the temperature rise of the contacts must also be taken into account for determining the permissible 
frequency of operation. Although, heat is dissipated during the de-energised intervals, the contacts are additionally heated to 
a considerable degree by arcing and by the starting currents when switching motors. The permissible frequency of operation is 
therefore dependent on the relative ON-time, the size and duration of the motor starting current and on the breaking current. 
Corresponding diagrams are provided in the catalogues for typical applications (Fig. 2.3 14).

Fig. 2.3 14

Example of a frequency of operation characteristic for contactors. The frequency of operation for small loads is limited by the 
temperature rise of the coil.
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At higher frequencies of operation, the contacts are predominantly loaded by the starting currents. This also applies to motor 
windings.

When switching motors – assuming that the motor is correctly rated for the stated frequency of operation – it should be checked 
whether the overload protection device is suitable for the high frequency of operation and that it does not release early or late.  
See also Section 4.1.2.

Note

Inadvertently exceeding of the permissible frequency of operation is the most frequent cause of prematurely eroded contactor 
contacts. If the contactors are made to “chatter” by rapidly recurring interruptions of the coil current and at the same time switch  
high currents – e.g. starting currents of motors – this results in heavy wear that can lead to welding or destruction of the contacts.

It is often difficult to identify faults in switching circuits as they can have a variety of causes, for example:

 - Loose terminals 

 - Gradually opening contacts of thermostats, pressure sensors, limit switches etc.

 - Strongly bouncing control contact

 - Slowly activated control switch 

 - Incorrectly programmed PLC

 - Drop of control voltage 

2.3.8 Rated frequency and harmonics
See also Section 2.4.3.

The normal supply frequencies for all catalogue data are 50 and 60 Hz. Also for direct current applications corresponding values are 
provided in the technical data. With other frequencies, whether higher (for example 400 Hz in military and aviation applications) or 
lower (for example 16 2/3 Hz on railroads) the loading of switching and protective devices changes.  
An examina-tion of the suitability for the respective application and the determination of the performance data for the specified 
loadings are essential prerequisites for correct device selection.

Also in applications in which harmonic contents of the current occur – for example in variable speed drives – the performance data  
of switching and protective devices may be affected.

2.3.9 Safety clearances
For devices that generate electric arcs, especially for circuit breakers, safety clearances to adjacent devices, conductors or conductive 
surfaces may be required, as the arc gases (plasma) can be ejected with very high temperature and speed. The safety clearances 
specified in the manufacturer documentations must be observed to avoid risks to persons and equipment. If the required safety 
clearances are not observed a secondary short-circuit may be created on the input side of a circuit breaker – for example when 
conductive gas is emitted during switching off a short-circuit. Such short-circuit would be switched off by the next short-circuit 
protective device on the supply side, whose rated current usually would be significantly higher. The destructive energy of the electric 
arc and the danger to persons and material are correspondingly high. 

The safety clearances are usually stated in the dimensional drawings for the devices (see example Fig. 2.3 15).

 

Fig. 2.3 15

Example of a dimensional drawing stating the required safety clearances to conductive materials; the safety clearances do not apply to 
connected, insulated conductors

Clearances between devices may also be necessary from a thermal viewpoint, in order to ensure adequate heatflow and compliance 
with the operationally permissible temperatures. These specifications are also available in the catalogues or on request. See also 
Section 6.1.
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2.3.10 Mounting position
Certain electrical devices such as contactors and circuit breakers may be subject to restrictions with respect to the permissible 
mounting position (Fig. 2.3 16) or their operational parameters may change with the mounting position. Thus standing contactors 
(table-mounted), if this mounting type is permissible at all, typically exhibit longer dropout times and are sensitive to impacts in 
vertical direction. Suspended contactors (overhead position) may require higher pull-in voltages, which pushes the lower limit of the 
tolerance range of the control voltage upward.

 

Fig. 2.3 16

Permissible mounting position of a contactor (example). 
The gray zone on the side indicates the required clearance from grounded components.

Specifications on the permissible mounting positions can be found in the dimensional drawings of the devices. With respect to the 
influence on the operational parameters of installation in positions that differ from the standard position (suspended, upright), it is 
recommended to inquire directly to the manufacturer.

2.3.11 Protective separation
For protection against electric shock in conjunction with the use of electronic control devices, protection by SELV (Safety Extra Low 
Voltage) and PELV (Protective Extra Low Voltage) is increasingly being chosen. The maximum voltage levels for SELV and PELV are  
50 V A.C. and 120 V D.C. (with exception of special applications with lower limit values).

In circuits with SELV and PELV, all devices that are included in the circuit must be isolated from other power circuits by insulation 
corresponding to that of a safety transformer. That means double creepage distances and the next higher impulse voltage withstand 
level Uimp. This applies for example for auxiliary circuits of switchgear with respect to their power circuits  (Fig. 2.3 17).

 

 
 

Fig. 2.3 17

Protective separation between power and control circuits

This is usually achieved by a reduction in the rated operational voltage. This means that for example a contactor suitable for 690 V 
can be used at 400 V in SELV and PELV circuits. The approval of SELV and PELV circuits requires design features that guarantee that 
protective separation is maintained even in the event of faults (for example broken parts). When selecting switchgear for SELV and 
PELV circuits attention must be expressly paid to the declaration of protective separation at the respective operational voltage.

2.3.12 Site altitude
The site altitude and hence the air density play a role with respect to the cooling conditions, the dielectric withstand voltage and 
electric arc extinction. A site altitude of up to 2000 m is consid-ered as normal in accordance with IEC 60947. For higher altitudes, some 
performance data of the devices must be reduced. With power electronics devices in many cases load reductions already apply from 
1000 m. In the product catalogs specifications should be found about the site altitudes on which the performance data is based.

For contactors, bimetallic thermal overload relays and circuit breakers with bimetallic tripping mechanisms, approximate values for the 
reduction of ratings at altitudes above 2000 m are provided in Tab. 2.3 6.
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21) Also applies for circuit breakers with bimetal tripping mechanisms. The trip characteristics of electronic protective relays usually do  
 not change with the site altitude
2) Reduction of the rated operational currents of motors in relation to the site altitude in accordance with specifications of the motor  
 manufacturer to be considered additionally

Tab. 2.3 6 
Correction factors for applications at altitudes over 2000 m

2.3.13 Shock and vibration
Low-voltage switchgear is designed and tested for loading by shock and vibration for normal industrial usage. This includes the usual 
stress in operation, for example, as a consequence of vibrations during switching of contactors.

In applications with increased stress by shock and vibration such as for example in vehicles, in rail transport or on ships a variety of 
measures is required to protect the devices from the immediate influence of externally generated shock and vibrations. In the simplest 
case, by optimization of the mounting position. In case of doubt, the manufacturer should be consulted.

2.4 Specific application conditions and switching tasks

2.4.1 Parallel and series connection of poles

2.4.1.1 Parallelling
Parallel connection of poles in switchgear increases its thermal load capacity. It should be remembered that the resistances of the 
individual poles vary due to contact burn-off, deposits etc. The current does not distribute itself equally among the parallel poles, but 
corresponding to their particular impedances.

A reduction factor for the total load must be applied to avoid overloading of the individual contacts. In practice the following values 
for the permissible total current can be calculated with:

-  with 2 parallel poles  Ie2 = 1.8 xIe 

-  with 3 parallel poles  Ie3 = 2.5 x Ie 

The making and breaking capacity remain in parallel circuits the same as for single contacts , as frequently one contact is opening or 
closing first and therefore must take the largest part of the switching work. Therefore it is not possible to increase the contact rating 
of contactors for switching motors and capacitive loads by parallel connection of contacts. Tab. 2.4 1 shows the switching capacity 
based on the total current with 2 and 3 contacts connected in parallel.

Tab. 2.4 1

Making and breaking capacity of contactors as a multiple of the rated operational current Ie for three pole switching  
and for two and three parallel poles

Altitude above sea leve [m]
[ft]

2000
6600

3000
10000

4000
13000

5000
16500

Contactors

Reduction factor for IAC-1 n·Ie 1.0 0.95 0.9 0.85

Reduction factor
for IAC-2, IAC-3, IAC-4

up to 415 V n·Ie 1.0 0.95 0.9 0.85

up to 500 V n·Ie 1.0 0.93 0.85 0.78

up to 690 V n·Ie 1.0 0.87 0.77 0.65

Bimetal overload relays 1)

Adjustment factor on the 
rated operational current of 
the motor 2)

n·Ie 1.0 1.06 1.11 1.18

Three pole switching
 → Ie

2 poles in parallel 1) 
 → Ie2 = 1.8 ∙ Ie

3 poles in parallel 1) 
 → Ie3 = 2.5 ∙ Ie

Making capacity 12∙Ie (12∙Ie2)/1.8 = 6.7∙Ie2 (12∙Ie3)/2.5 = 4.8∙Ie3

Breaking capacity 10 ∙ Ie (10∙Ie2)/1.8 = 5.6∙Ie2 (10∙Ie3)/2.5 = 4∙Ie3

1) Voltage across each contact U = Ue/√3
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For this reason contactor poles should only be connected in parallel for switching resistive loads (utilisation category  
AC 1). Where possible they should only be connected in parallel by means of copper bars fed in the center in order to ensure 
symmetrical current distribution and good heat dissipation. For small contactors special connecting bridges are available.

Any short-circuit currents that occur are distributed between the poles depending on the given pole resistances. In the case of circuit 
breakers with parallel contacts, it may happen at small short-circuit currents that the operating current of undelayed electromagnetic 
short-circuit releases is not reached. Consequently such a short-circuit is only switched off by the thermal release after a delay. The 
pick-up threshold for undelayed short-circuit breaking rises approximately by a factor given by the number of parallel poles.

2.4.1.2 Series connection
When two or three poles of switchgear are connected in series (Fig. 2.4 1), the advantages include the following:

 - Increased dielectric withstand voltage

 - Improved switching capacity

 - Higher operating voltage

  - Larger contact life span

These advantages are exploited by using three-pole contactors and circuit breakers for switching single-phase alternating current and 
above all direct current. The limit for higher operating voltage is determined by the rated insulation voltage that may in no event be 
exceeded. The permissible current loading of poles connected in series is the same as for individual poles.

 

 

Fig. 2.4 1

Examples of diagrams for poles connected in series. Where grounded power supplies are used (top graph) with loads switched on both 
sides, it should be noted that ground faults can lead to bridging of contacts and hence to a reduction in the breakable voltage.

The overload trip characteristics of devices with thermally delayed bimetal tripping mechanisms, such as circuit breakers and overload 
relays, apply when all three bimetal strips are equally loaded. This is guaranteed by connecting the circuits in series. In devices that are 
sensitive to phase failure, series connection of all circuits is compulsory. With electronic motor protection relays, it may be necessary to 
deactivate the phase failure protection.

The impact of series connection of circuits when switching direct currents is dealt with in  Section 2.4.2.

For the effect of series connection of circuits on switching frequencies < 50 Hz and > 60 Hz see Section 2.4.3.

2.4.2 AC switchgear in DC applications
Switchgear designed for alternating current can carry at least the same rated continuous operational DC current. With direct current 
the skin effect in the circuits disappears and none of the specific effects associated with alternating currents such as hysteresis or eddy 
current losses occur. 

DC devices that are operated at low voltage can be switched by AC switchgear without difficulty, as their direct current switching 
capacity at low voltages is practically the same as for alternating current.

With voltages in excess of around 60 V, the direct current switching capacity of AC switchgear with double-breaking contacts (for 
example contactors) decreases strongly. By connecting two or three circuits in series (Fig. 2.4 1) this limit can be raised to twice or 
three times the voltage.

The reason for the reduced switching capacity with DC compared with AC is the absence of the current zero crossover that with AC 
supports the quenching of the electric arc. The electric arc in the contact system can continue to burn under larger direct voltages 
and thus destroy the switchgear. With direct voltages, the contact erosion and hence also the contact life span differ from those at 
alternating voltage. The attainable values for direct current are specifically tested and documented.

With direct current, the load affects the switching capacity more strongly than with alternating current. The energy stored in the 
inductance of the load must largely be dissipated in the form of an electric arc. Hence with a strongly inductive load (large time 
constant L/R) the permissible switching capacity for the same electrical life span is smaller than with an ohmic load due to the much 
longer breaking times.

1-pole 2-pole 3-pole
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Overload release units

The reaction of bimetal strips heated by the operating current depends on the heat generated in the bimetal strips and in their 
heating coil, if any. This applies equally for alternating current and direct current. The trip characteristic can be somewhat slower with 
direct current as there are no hysteresis and eddy current losses. With overload releases that are sensitive to phase failure, all three 
circuits should always be connected in series to prevent premature tripping.

Overload releases heated via current transformers are not suitable for direct current. Also electronic overload relays in most cases 
cannot be used in direct current applications as the current is measured via current transformers and their functionality is tailored to 
alternating current.

Short-circuit releases

Electromagnetic overcurrent releases can be used with direct current. However the tripping threshold current is somewhat higher 
than with alternating current.

Undervoltage and shunt-trip releases

Undervoltage and shunt-trip releases operate with magnet circuits. Special designs are required for direct voltage.

2.4.3 Applications at supply frequencies < 50 Hz and > 60 Hz.  
 Effect of harmonics
Low-voltage switchgear is designed for a supply frequency of 50 ... 60 Hz. If it is desired to use them for other rated frequencies the 
following device characteristics should be checked:

 - thermal load capacity of the circuits,

 - switching capacity,

 - life span of the contact system,

 - release characteristics,

 - operating characteristics of magnetic and motor drives.

The effect of higher frequencies on the performance of low-voltage devices should be considered both in networks with higher 
basic frequencies (for example 400 Hz) and also in cases where current-harmonics occur. Such current-harmonics occur if the supply 
voltage contains harmonics or if non-linear consumers are connected. Such consumers may for example be compensation devices 
for luminescent lamps that operate in the range of saturation or devices with phase angle control. With consumers with phase angle 
control and with frequency convert    ers (Inverters; see Section 3.10) harmonics with frequencies up to several kHz may arise in the 
supply. The harmonic content can be increased by capacitors connected to the supply, whose current consumption increases with 
increasing frequency. Special attention should be paid to this factor in individually compensated motors and a correction of the 
current settings of the protective relay may be required.

In applications in which current-harmonics arise, the effect of the harmonics (for example additional heating effects) is added to that 
of the basic frequency. This can be especially critical in devices that contain coils or ferromagnetic materials (bimetal heating coils, 
magnetic releases etc.).

In the case of loads with connection to the neutral conductor (e.g. single-phase loads such as luminescent lamps, small power 
adapters etc.), a high harmonic content can result because of the formation of a zero-sequence-system that may lead to thermal 
overloading. This should also be taken into account in the use of 4-pole switchgear.

2.4.3.1 Effect of the supply frequency on the thermal load
In contrast to direct current, with AC the current does not flow evenly through the cross-section of a conductor. The current density 
falls from the surface inward. This effect – known as the skin effect – increases with increasing frequency so that at very high 
frequencies the core of the conductor is virtually de-energised and the current only flows in a relatively thin layer at the conductor 
surface.

This means that with increasing frequency, the resistance of the circuit increases. In addition, due to magnetic induction, higher 
hysteresis and eddy current losses are created in adjacent metal parts. Especially ferromagnetic materials (arc extinguishing parts, 
screws, cage terminals, magnets, base plates) can reach unacceptably high temperatures. Special care should be taken at frequencies 
> 400 Hz.

Because of the variable cross-sections of the conductive parts as well as the different nature and distances to adjacent metal 
parts, additional heating effects and especially the local overtemperatures vary according to device type. This has the following 
consequences for the load capacity of the switchgear and the switchgear combinations.

Individual clarification is required for each individual application as a general statement cannot be provided due to the widely differing 
design features, especially at frequencies > 400 Hz.
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Load capacity of contactors, load switches and circuit breakers

Devices that are designed for a frequency of 50/60 Hz can, from a thermal viewpoint, be used for the same rated current at a lower 
frequency. Approximate values for permissible operational currents are stated in Fig. 2.4 2. The actual reduction factors vary according 
to design and the rated current range of the devices. It should be noted that cage-type terminals have an adverse effect on heating at 
higher frequencies.

 

Fig. 2.4 2 

Approximate values for permissible operational currents AC-1 of contactors, load switches and circuit breakers at higher frequencies 
relative to Ie at 50…60 Hz

Higher frequencies and installation provisions

For installation at higher frequencies, special attention must be paid to the effects of current distribution (skin effect), hysteresis and 
eddy current losses:

The conductors to be connected should be rated according to the higher frequency (larger cross-section, flat or tube conductors). 
The load capacity of circuits at higher frequencies can be roughly estimated by help of Fig. 2.4 3. It depends on the geometry of the 
rails and their arrangement and should be measured separately in each individual case. The conductors should be positioned as far as 
possible from conductive (especially ferromagnetic) parts, to minimize inductive effects.

 

 

Fig. 2.4 3

Approximate load capacity of busbars at higher frequencies [12]

Ie50 Load capacity at 50 Hz

Ief Load capacity at frequency f

In order to reduce losses, no cage-type terminals should be used. This is especially important with currents > 100 A!

For single phase loads over 400 Hz, the two outer poles of contactors should be used in parallel for the feed line and the middle pole 
for the return line. This results in a partial mutual compensation of the magnetic induction.     
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2.4.3.2 Effect of the supply frequency on the switching capacity
The starting currents of motors for higher frequencies are sometimes higher than those at 50/60 Hz. At 200 Hz this can result in 
15 times the rated current and at 400 Hz up to 20 times. The power factor may be significantly worse than for motors at 50/60 Hz. 
Allowance should be made for the increased making currents when selecting devices.

Switching capacity of contactors and load switches

When breaking A.C. circuits, the clearance between open contacts must be sufficiently de-ionised during the current zero crossover to 
prevent a re-ignition of the electric arc in the next half cycle. At higher frequencies, the increase of the voltage after the zero crossover 
is usually faster. The electric arc duration per half cycle and hence the ionization of the distance between open contacts is however 
smaller. Therefore contactors and load switches (zero-point interrupters) up to around 400 Hz have virtually the same switching 
capacity as at 50/60 Hz.

Insofar as the making currents are permissible (see above) – a reduction of the rated current Ie according to Fig. 2.4 2 for contactors 
and load switches is only required because of the larger thermal loading at higher frequencies.

The circumstances at lower frequencies are less favourable. The effect of the strong ionisation of the switching chamber due to 
the longer presence of the electric arc is predominant with non current limiting switchgear. The switching capacity falls at lower 
frequencies and becomes more heavily dependent on the voltage and the inductance of the load.

The full rated operational current for three-pole operation at 400 V and 50/60 Hz can be permitted at 16 2/3 Hz and 400 V with two 
poles in series. For rated operational voltages up to 500 V and 16 2/3 Hz all poles should be connected in series so that the full rated 
operational current can be operated.

At frequencies below 16 2/3 Hz, the direct current switching capacity of switchgear in accordance with catalogue specifications must 
be applied.

Switching capacity of circuit breakers

The short-circuit currents in medium frequency supplies are comparatively low. Any reduction of the switching capacities at 
frequencies over 400 Hz compared to 50/60 Hz does therefore not cause problems in practice.

The effect of the current limitation is reduced with increasing frequency, as at higher frequencies the peak value of the  
short-circuit current is already reached during the reaction time of the switch. In view of the comparatively low short-circuit currents in 
medium frequency supplies, this is not relevant in practice. The short breaking times of current limiting circuit breakers are retained.

With two poles connected in series, circuit breakers with current limitation in single-phase supplies typically reach up to 400 V 
the rated breaking capacity at 50/60 Hz. At voltages over 400 V to 690 V A.C. on the other hand, series connection of three poles is 
required. In single-phase supplies it must always be ensured that all three poles of thermally delayed overload releases are in the 
current loop.

2.4.3.3 Performance of release units at supply frequencies 
 < 50 Hz and > 60 Hz
Thermal overload releases

Thermally (current-dependent) delayed overload releases and relays operate with bimetal strips. These are usually heated via a heating 
coil by the heat losses of the operating current or the secondary current of a current transformer.

Up to around 400 Hz, the heat losses in the heating coils (ohmic losses) are the main heat source. The additional inductive heating in 
the bimetal strips itself is practically negligible up to these frequencies, so that the tripping characteristic will only be slightly faster 
than at 50 Hz. At frequencies over 400 Hz the proportion of inductive heating increases and the ultimate tripping current falls with 
increasing frequency.

Overload relays that are connected to main current transformers with a high overcurrent factor (protective current transformer) or that 
have integrated current transformers, display a some-what faster tripping characteristic in comparison to 50 Hz at frequencies over 50 
Hz to 400 Hz. 

The trip characteristic of relays with a saturation current transformer for heavy-duty starting becomes considerably faster with 
frequency increasing up to 400 Hz as the saturation effect will move proportionally to the frequency towards higher currents.

Electronic overload devices

Due to the variety of principles of operation, no general statement can be made on the performance of electronic overload relays at 
frequencies over and below 50/60 Hz. With relays with current transformers it should be noted that application at low frequencies is 
limited because of transformer saturation.
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Short-circuit releases

For the activation of electromagnetic overcurrent releases, in addition to the size of the current also the time is relevant during which 
the current is applied. At 50/60 Hz the armatures of the electromagnetic overcurrent releases are activated within around  
5 ms. During the half-cycle, the force is sufficient to pull the armature all the way through to its end position. At higher frequencies 
the duration of a half cycle is too short.

The pick-up-threshold of the short-circuit-releases increases over 50/60 Hz and at around 400 Hz approaches 1.4 times of  
the 50/60 Hz value.

Increased operating frequencies can lead to increased temperature-rise of the releases.

2.4.3.4 Switchgear used with soft starters 
Overload protection

Thermal relays and circuit breakers are equipped with thermal overcurrent releases that can be adjusted to the motor rated current 
and even during soft starting map the motor heating. The harmonic components of the currents that also contribute to motor 
heating are measured.

The performance of electronic motor protective devices with respect to the effect of the harmonics (for example true r.m.s. value 
measurements) should be obtained from the respective device documents.

 

Fig. 2.4 4

The basic design of a power circuit with circuit breaker, contactor and soft starter 

Installations that allow heavy-duty starting via a soft starter with a starting time of around 1 minute and longer require besides  
a specifically selected motor also specifically selected switching and protective devices.

It is a good idea to protect motors for heavy-duty starting that are activated by soft starters with electronic motor protective devices. 
The circuit breaker must be selected and adjusted so that it does not trip before the motor protective device and that  
it is thermally capable for the specific load (harmonics content and starting time). Circuit breakers without thermal releases  
can be employed to advantage. The selection and adjustment of the circuit breaker is as for heavy-duty starting conditions  
(see Section 4.1.2.2). In this case, the circuit breaker only has to provide short-circuit protection and/or line protection.

Short-circuit protection

Short-circuits are critical and endanger the power semiconductors of the soft starters. Circuit breakers are not sufficiently fast to 
protect power semiconductors of soft starters against short-circuits. For short-circuit protection, the specifications provided by the 
soft starter manufacturer should therefore be observed. Short-circuit protection for the power semiconductors of soft starters is 
often omitted for cost reasons, whereby such coordination only satisfies the requirements of coordination type 1.

2.4.3.5 Switchgear for use with frequency converters (inverters)
Overload protection on supply side

See also Section 3.10.4

Motors that are controlled by an inverter are not directly connected to the power supply (via rectifier, intermediate circuit and 
inverter, Fig. 2.4 5). Circuit breakers or motor protective devices upstream of the inverter do not receive any direct information about 
the condition of the motor and thus cannot full fill the motor protection function. Motor protection functions are usually integrated 
in the inverter.

M
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The basic design of a circuit with rectifier, intermediate circuit and converter of the inverter. Frequently filters are provided on the input 
side (whether internally or externally) to reduce supply interference.

As the reactive current of the motor is provided by the intermediate circuit capacitance, the supply current is smaller than the motor 
current and its power factor cos φ is nearly 1. Because of the harmonic content of the current, the thermal overcurrent release of 
the circuit breaker should be set to approx. to 1.2 times the motor rated current, but no more than the permissible current carrying 
capacity of the connecting cable.

Short-circuit protection

Inverters usually protect themselves against short-circuits on the output side. Short-circuits on the supply side between pole 
conductors or pole conductors and ground are switched off by the upstream short-circuit protective device (circuit breaker or fuse).

Circuit breakers, motor protection relays or contactors in the output circuit of inverters

If low-voltage switchgear is installed in the output circuits of inverters, this must be compatible with the high switching frequency of 
the output signal of several thousand Hz. The harmonic content of the current can result in overheating of the devices. Especially in 
circuit breakers with plunger-operated magnetic releases, the sensitivity to current harmonics increases with decreasing rated current. 
As a guideline can serve: Due to the large number of windings on plunger coils, excessive heating should be expected with versions 
with < 10 A rated current. The manufacturers’ specifications should be observed.

With long screened lines between the output of the frequency converter and the motor, switch contacts located between the devices 
can be stressed by high peak currents caused by the capacitance of the line that may even result in welding of the contacts. The high 
charging currents can under certain circumstances also result in undesired releasing. Filters can have similar effects. The switching 
mode of inverters generating steep voltage slopes can lead to additional voltage stress on long lines by traveling wave effects. Suitable 
filter measures may be required as a remedy.

Generally it should be ensured by the control circuit that loadside contactors are switching without load, i.e. that the frequency 
converters are switching on after the contactor and switching off before it.

Overload protection on the output side

Overload protective devices with bimetal strips (bimetal relays and circuit breakers with bimetal tripping mechanism) are designed 
for 50/60 Hz. As their mode of operation is based on the heating of the bimetal strips by the motor current, the release values relate 
to heating by 50/60 Hz currents. Depending on the design of the device, the switching frequencies of frequency converters extend 
from several kHz to the ultrasonic range and generate harmonic currents in the output that result in additional temperature rise in 
the bimetal strips. Long shielded lines to the motor can cause additional increases of the harmonic components because of the line 
capacitance.
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Fig. 2.4 6

The switching of the output voltage (above) results in a harmonic content of the output current of frequency converters (below)  
that affects the performance of protective devices on the load side.

The temperature rise is not only dependent on the r.m.s. value of the currents, but also on the induction effects of the higher 
frequency currents in the metal parts of the devices. The additional heating effect results in a reduction of the ultimate tripping 
current of the overload relays, whose extent must be individually determined for the respective combination of frequency rectifier 
/ overload relay / connecting lines / motor. As a consequence of these effects, the current settings should be increased for overload 
relays with bimetals, the choice of a higher current range may even be necessary. Depending on the device combination, the factor 
can be up to 150 %.

As the determination of the shift of the ultimate tripping current is very time consuming in individual cases and for all possible 
device combinations, it is recommended in practice to set the motor protective devices by physical testing. To this end the drive 
with a rated load is run for around one to two hours and the overload relay initially adjusted so that there is no risk of it being 
released. At the end of this operating period, the current setting on the device is successively reduced until the relay trips. The final 
setting is around 10 % above the trip value. If interruption to operation by tripping during the test is undesired, the release contact 
can be temporarily bypassed. The current setting also provides the basis for checking the required size of the contactor or other 
switchgear in the circuit.

Also the performance of electronic overload relays may depend on and be affected by the harmonic content of inverter currents. 
It is not possible to make a general statement due to the differences in the modes of operation. In electronic overload relays with 
current transformers it should be remembered that use at low frequencies is limited because of converter saturation.

2.4.4 Application of four-pole switchgear devices
The majority of low-voltage switchgear is equipped with three contacts in the main circuit, which switch three-phase loads in all 
poles. In some applications switchgear with four main poles is required, either for safety reasons or for an optimum solution of the 
application. This may require various device configurations.

2.4.4.1 Applications of switchgear with 4 N/O contacts
Four N/O contacts are required or at least very advantageous for the below applications 

	 •	 Applications	which	require	the	interruption	of	the	neutral	line	for	switching	off	or	disconnecting	loads.	 
  This can be  the case in supplies with adverse grounding conditions, in TT supplies, for protective disconnection   
  in IT or impedance- grounded networks. Attention has to be paid that the neutral pole closes before or at the    
  same time as the other poles  and opens after them or at the same time. When switching non-linear consumers,   
  specific attention has to be paid regarding the current loading of the neutral line. See also Section 2.4.3.

	 •	 Switching-over	of	supply	systems	(for	example	for	standby	power	supplies),	for	which	complete	separation	of		 	 	
  the two supply systems is required.

	 •	 Switching	of	several	single-phase	loads	(heaters,	lamps)	with	one	switchgear	unit.

	 •	 Switching	direct	current	loads	with	higher	rated	voltage	that	requires	the	series	connection	of	four	contacts		 	 	
  (see also Section 2.4.2).
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2.4.4.2 Applications of switchgear with 2 N/O and 2 N/C contacts
Devices with two N/O and two N/C contacts are useful in applications in which one of two circuits must always be closed.  
These are, for example

	 •	 Switching	a	heater	between	two	levels	(Fig. 2.4 7)

	 •	 Switching-over	between	single-phase	supplies	–	for	example,	emergency	power	supply	systems	(Fig. 2.4 7)

	 •	 Reversing	motors	for	space	saving	arrangement	of	devices	(Fig. 2.4 8)

	 •	 Reversing	of	2-step	motors	with	separated	windings	(Fig. 2.4 9)

 

Fig. 2.4 7

Four-pole contactors with 2 N/O / 2 N/C contacts for switching single-phase loads (left) or switching-over between two supplies (right)

  

Fig. 2.4 8

Slimline reversing starter with a 2 N/O / 2 N/C contactor for reversing 

 

Fig. 2.4 9

Reversing of a two step motor with separate windings

Fig. 2.4-6
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2.4.4.3 Applications of switchgear with 3 N/O and 1 N/C contact
Devices with three N/O and one N/C contact are used in applications in which, when the main load is switched off  
– for example the motor –, another single-phase load must be switched on. Such applications could include:

	 •	 Safety	circuits

	 •	 Direct	current	brake	systems	that	are	activated	when	a	drive	is	switched	off

	 •	 Clutches	that	must	be	released	when	the	drive	is	switched	off

2.4.5 Application of circuit breakers in IT networks
IT supplies are used to prevent that a ground fault leads to immediate disconnection of the affected circuit like in a grounded system. 
Although a first ground fault results in a displacement of the potential of the entire supply, continued operation is still temporarily 
possible. Special ground fault monitoring equipment reports any ground faults and hence makes it possible to quickly rectify the fault 
– often without disruption to the operation of the plant. The situation is similar in supplies with high impedance grounding.

If however a second ground fault occurs in another phase, there is a short-circuit that must be immediately cleared by the  
short-circuit protective device. The voltage to be switched off varies depending on the locations of the short-circuits (Fig. 2.4 10). This 
results in different voltage levels to be switched off by the short-circuit protective device and in the case of circuit breakers to different 
required breaking capacities.

 

 

 

Fig. 2.4 10

Double ground faults on the load side of the circuit breakers do not cause increased stress. If, however, there is one ground fault on the 
supply side and the other on the load-side, a significantly higher breaking capacity is required because of the increased voltage load.

If both short-circuits occur on the load-side of the circuit breaker, the breaking work is shared between two contacts and the required 
breaking capacity corresponds to the normal 3-phase values.

If the location of one short-circuit is on the supply-side of the circuit breaker and the second short-circuit on the load-side, then 
one contact only of the circuit breaker has to perform the total breaking work and this at phase-to-phase voltage. In this case, the 
significantly lower single pole breaking capacity of the circuit breaker at the phase-to-phase voltage is critical. If the values cannot be 
obtained from the device documents, an inquiry should be made. If the short-circuit current at the installation site exceeds the single 
pole switching capacity of the circuit breaker, then a back-up fuse is required.

For three-pole short-circuits there is no difference between IT supplies and other supply types. The ultimate short-circuit breaking 
capacity  Icu and the service short-circuit breaking capacity Ics continue to apply.

Circuit breakers under IEC 60947-2 are suitable for use in IT supplies, if they are not marked with the symbol            . Testing is in 
accordance with Annex H.

2.4.6 Switchgear for safety applications
The safety of machines, systems and processes with respect to the protection of persons and property from damage of any kind is the 
primary objective of the legislation and of regulations and norms for technical measures and solutions. Also low-voltage switchgear 
is being applied in safety applications. In Section 4 “Protection” the dangers that result from electrical energy directly are dealt-with in 
more detail. 

In safety applications it is very important to receive reliable feedback about the main contacts position so that for example it can be 
excluded that an auxiliary contact reports open main contacts but while in fact – for example because of contact welding – they 
are closed. In this context the term “mirror contacts” for power contactors is of importance. In a similar way, the methods of “positive 
guidance” or “mechanical link” of contacts of control contactors ensure that the position of N/O and N/C contacts cannot be mutually 
contradictory.

In modular systems, mirror and mechanically linked contacts must be mechanically fixed to the base unit, so that they cannot 
separate.

Fig. 2.4-9
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2.4.6.1 Mechanically linked contacts
Appendix L of IEC 60947-5-1 defines the criteria for the mechanical linking of contacts. The standard defines mechanically  
linked contact elements as a “combination of n Make contact element(s) and m Break contact element(s) designed in such a  
way that they cannot be in closed position simultaneously …”. The standard also defines the test conditions: With welding of a  
contact – for example of a make-contact – the break-contacts of the contactor when dropped out must still have an opening 
clearance of 0.5 mm or withstand an impulse voltage of 2.5 kV. The same applies with welding of a break-contact.

 

Fig. 2.4 11

The make contacts remain open when mechanically linked when the control relay is excited and a break contact has welded.

In accordance with standard, mechanically linked contacts should be clearly labled on the device or in the documents or in both 
places. Fig. 2.4 12 shows the symbols to be used.

 

Fig. 2.4 12

Symbol for mechanically linked contacts together with contacts that are not mechanically linked (left) and symbol for mechanically 
linked contacts, when all contacts are mechanically linked (right)

2.4.6.2 Mirror Contacts
Appendix F of IEC 60947-4-1 defines the requirements for mirror contacts, i.e. for the unambiguous feedback of the state of  
the main contacts in event of fault, for example with welded main contacts. The standard defines a mirror contact as “normally closed 
auxiliary contact which cannot be in closed position simultaneously with the normally open main contact under conditions defined 
….”, i.e. if a main contact has welded. The test conditions are similar to those for mechanically linked contacts: The auxiliary normally 
closed contacts that are designed as mirror contacts must still have an opening clearance of 0.5 mm or be able to withstand a test 
impulse voltage of 2.5 kV when the contactor is de-energised.

 

Us

Us
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Fig. 2.4 13

Principle of mirror contacts: the normally open auxiliary contact remains open when the contactor is de-energised and a  
main contact has welded.

A power contactor can have several auxiliary mirror contacts. In large contactors it may be necessary to connect two mirror contacts in 
series, one of which is mounted on the left and the other on the right side. Thus even if the contact armature is in an inclined position 
– for example if an outside contact has welded – safe feedback is ensured.

Like mechanically linked contacts, mirror contacts must be marked directly on the device, in the documentation or in both locations.

 

Fig. 2.4 14

Symbol for marking mirror contacts

2.4.7 Installations in hazardous atmospheres
2.4.7.1 History, guidelines and regulations
The Directive 94/9/EC (ATEX 05) regulates the requirements for explosion protection in the European Union. It deals with the 
properties of explosion-protected devices, protective systems and components for free trade in the internal market of the EU  
and stipulates that the use of such devices in member states may not be prohibited, hindered or restricted.

The Directive is structured in accordance with the so-called “New Approach”. A key feature is renouncing from strict normative 
regulations; instead the requirements on the products are comprehensively defined directly in the directive (Appendix II: Essential 
health and safety requirements relating to the design and construction of equipment and protective systems intended for use in 
potentially explosive athmospheres). This is done in a general form, so that reference to suitable standards is normally preferable.

While placing on the market of explosion-protected devices (protective systems, components) is uniformly regulated by Directive 
94/9/EC, the safe operation of these devices is ultimately regulated under national ordinances. The Directive 1999/92/EC, also known 
as the Safety at Work Directive, defines minimum requirements below which the requirements of the national regulations may not fall.

The extensive CENELEC standards for electrical equipment for hazardous areas apply in all West European states and practically cover 
the same subjects as the IEC standards.

Us

Us
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2.4.7.2 Classification of hazardous areas
When handling combustible or oxidizing substances that are present in fine dispersion as gases, vapors, mists or dusts, risks of 
explosion can arise. An effective source of ignition must be present to initiate an explosion. Sources of ignition can arise in electrical 
plants as electrical sparks and arcs, mechanical sparks and hot surfaces.

Hazardous areas are zones, in which, due to the local and operational conditions, a potentially explosive atmosphere of a dangerous 
quantity can occur. Hazardous areas are classified into zones (IEC/EN 60079-10, EN 50281-3 and IEC/EN 61241-10) according to the 
nature of the combustible substances (gases, vapors and dusts) and according to the frequency of occurrence and duration of the 
explosive gas atmosphere in the Ex-zone (permanent, occasional or very seldom and short-time) (Tab. 2.4 2).

In accordance with Appendix I of the Directive 94/9 EC distinction is made between 2 groups of devices:

 - “Equipment-group I” (Methane or combustible dusts) in the mining industry and 

 - “Equipment-group II” (gases or dust/air mixtures) for the remaining areas with explosive atmospheres.

“Equipment-group II” is sub divided among explosion groups IIA (for example propane), IIB (for example ethylene) and IIC (for example 
hydrogen). The hazard of the gases increases from explosion group IIA to IIC. The requirements on the electrical equipment increase 
accordingly.

Combustible gases and vapors are classified into temperature classes according to their ignition temperatures, the electrical 
equipment according to its surface temperature (T1 ... T6,   Tab. 2.4 4).

As explosion-protected electrical equipment does not always have to satisfy the highest requirements, it is classified according to 
zone, temperature classes and the explosion group of the combustible substances. This enables the adaptation of explosion-protected 
electrical equipment for various ignition protection types (Tab. 2.4 3).

 

Tab. 2.4 2

Classification of electrical equipment according to the equipment-group (for example II) and equipment-category (for example 3 G for 
Zone 2) and classification by zones

Classification of equipment acc. to IEC/EN Categories of zones exposed to the risk of ignition

Equipment group
(application area)

Combustible
substances

Equipment  
category

Zones
IEC/EN

Temporary behaviour of 
combustible substances in zones 
exposed to the risk of explosion

I
Mines

Methane,
Dusts

M1 Underground parts 
of mines and suface 
installations of mines M2 oder M1

II
Other areas with 

combustible 
atmospheres

Gases,
vapours

1G Zone 0 Permanently, long-term or 
frequently present

2G or 1G Zone 1 Occasionally present

3G or 2G/1G Zone 2 Low probability of presence or rare 
occurence or short-term

Dusts 1D Zone 20 Permanently, long-term or 
frequently present

2D or 1D Zone 21 Occasionally present

3D or 2/1D Zone 22 Low probability of presence or rare 
occurence or short-term

Explanation of equipment categories:
M1        Continued service in case of presence of combustible atmosphere must be guaranteed
M2        It must be possible to switch-off the equipment in case of presence of combustible atmosphere
1G/D    very high safety = Equipment safety must be maintained even in case of rare malfunctions, 
              e.g. at occurrence of two independent failures.
2G/D    high safety = Equipment safety must be maintained in case of frequently expected malfunctions,
              e.g. in case of failure of one component.
3G/D    safe under normal service conditions = Equipment safety guaranteed under normal service conditions
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Ignition protection Principle of protection Zone
 Standard

EN / IEC

General requirements 
EN 50014

IEC 60079-0

Installation
EN 60079-14
IEC 60079-14

Flameproof enclosures d
Avoid the transfer of an explosion to the outside 1 / 2 EN 50018

IEC 60079-1

Increased safety e
Avoid sparks and ignition temperatures 1 / 2 EN 50019

IEC 60079-7

Intrinsic safety i
Limitation of the eneregy of sparks and of 
temperature

0 /1 /2 EN 50020/39
IEC 60079-11

Pressurised enclosures p
Keep Ex-atmosphere away from source of ignition 1 / 2 EN 50016

IEC 60079-2

Encapsulation m
Keep Ex-atmosphere away from source of ignition 1 / 2 EN 50028

IEC 60079-18

Oil immersion o
Keep Ex-atmosphere away from source of ignition 1 / 2 EN 50015

IEC 60079-6

Powder filling q
Avoid the transfer of an explosion to the outside 1 / 2 EN 50017

IEC 60079-5

Type of protection „n“ n
Various principles of protection for zone 2 2 EN 50021

IEC 60079-15

Protection by enclosure IP
Keep Ex-atmosphere away from source of ignition 20 / 21 / 22 EN 50281-1-1

IEC 61241-1

Tab. 2.4 3

Ignition protection types and corresponding EN and IEC standards

The identification of ignition protection types of electrical equipment usable e.g. for Increased Safety “e”, Explosion Group IIC and 
Temperature Class T6 is different according to EN and IEC as follows (see also Section 2.4.7.5):

- EN  → EEx e IIC T6

- IEC  → Ex e IIC T6

For the following considerations the ignition protection type Increased Safety “e” for motors in conjunction with the associated 
motor protection is of primary interest. It should thereby be noted that the motor protective devices should be installed outside the 
hazardous areas. This application option is specially identified under CENELEC (see Section 2.4.7.5). With this ignition protection 
type, special precautions are taken to ensure an increased margin of safety and to avoid the occurrence of impermissibly high surface 
temperatures and of sparks or electric arcs inside or outside the electrical equipment.

2.4.7.3 Motors for hazardous areas
Electrical drives that are operated in hazardous areas must be built and engineered so that they cannot become an ignition source. 
This applies not only to normal operating and starting, but also in case of faults, for example at stalled rotor.

The specified temperature limits for hot surfaces as a potential source of ignition have for ignition protection types Flameproof 
enclosures “d” (transfer of an explosion to the outside excluded) and Pressurised enclosures “p” (Ex-atmosphere is kept away from the 
source of ignition) to be complied with only on the outside of the enclosure. Due to the lag in temperature changes of the motor 
housing, short-term temperature rise of the windings over the limit temperature of the temperature class are with these ignition 
protection types regarded as non-critical from an explosion protection viewpoint. In contrast, with a motor of ignition protection type 
Increased Safety “e” (suppression of sparks and high temperatures), exceeding the limit temperature of the corresponding temperature 
class, for which the motor is foreseen, inside the motor even short-term is not permissible.
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Limit temperatures of electrical machines of ignition protection type “e” with insulation material class F. IEC 60079-14 ed. 4.0. Copyright 
© IEC, Geneva, Switzerland. www.iec.ch

Based on the requirement that premature damage and ageing of the motor windings must be reliably prevented, there is a further 
limitation with respect to the heating characteristic of the windings: The permissible ultimate temperature rise corresponding to 
the insulation material class (temperature class) of the windings is reduced compared to the normal values by 10 to 15 K in motors 
of ignition protection type “e”. In theory this signifies a doubling of the windings life span and serves to increase safety, also resulting 
however in a reduction of the power output compared with the standard values for a motor of the same size.

The permissible limit temperature of a winding in an electrical machine of ignition protection type Increased Safety “e” depends, on the 
one hand, on the temperature class from the explosion protection viewpoint and, on the other, on the insulation material class of the 
winding. Tab. 2.4 4 shows the relevant limit values for motors of isolation class F.

If another insulation material is used, these values change according to the temperature class of the insulation material  
(Tab. 2.4 5).

 

Tab. 2.4 5

Limit temperatures of motors of ignition protection type “e” and “d” in relation to the insulation material class of the windings

With respect to the temperature rise characteristics of an electrical machine, two operating statuses should be taken into account: 
continuous duty and stalled rotor motor.

At continuous duty under full load the machine slowly heats up and after several hours, depending on its size, reaches its  
steady-state temperature. At the highest permissible ambient temperature, this steady-state temperature may not exceed the limit 
temperature of the insulation material class nor of the temperature class.

In the schematically presented example of the heating characteristics of a machine of insulation material class F in Fig. 2.4 15, neither 
the permitted limit of temperature class T4 nor that of insulation material class F are exceeded once the steady-state temperature has 
been reached.

The second operating case should be considered as more critical. It occurs if the rotor of the 3-phase asynchronous motor becomes 
stalled after running at service temperature. The current that then flows is several times higher than the rated current and causes the 
temperature of the rotor and stator windings to rise rapidly. A monitoring device must disconnect the machine from the supply within 
the heating time tE, i.e. the time for the limit temperature of the windings to be reached. The heating time tE is the time after which  
the permissible temperature is reached with a stalled rotor condition starting from service temperature. It is a characteristic quantity  
of the motor. 

Limit temperatures (°C)

Temperature class T1 T2 T3 T4 T5 T6

Ignition class
IEC/EN 60079-14, Tab.1

> 450 300 200 135 100 85

Maximum surface temperature
EN 50014. Tab.1; IEC/EN 60079-14 Tab.1

< 450 300 200 135 100 85

Windings class F continuously
EEx e,  EN 50019,  Tab. 3

< 130 130 130 130 95 80

Winding class F at end of tE
EN 50019,  Tab. 3

< 210 210 195 130 95 80

 = determined by the temperature class of the gas

 = determined by the temperature class (isolation class) of the windings

Limit temperatures (°C)

Insulation class E B F H

“d“, Continuous service 115 120 145 165

“e“, Continuous service 105 110 130 155

“e“, at the end of the tE-time 175 185 210 235
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As the selected example of a motor with stalled rotor in Fig. 2.4 15 shows, the limit tempera-tures of the temperature class for 
applications T4 and T3 determine the tE-time.

Fig. 2.4 15

Schematic presentation of the heating characteristic of a motor. When locked at service temperature, the motor must be disconnected 
from the supply within the tE time.

If however the machine is intended for hazardous areas of temperature class T2 (or T 1), the thermal limit is determined by the short-
term permissible limit temperature of isolation material class F of 210 °C. 

Ex-motors are not inherently explosion protected. They achieve the required explosion protection by means of complementary 
installation measures, including appropriate selection of equipment and service conditions. With explosion protection type Increased 
Safety “e” this particularly requires connection to a correctly selected and adjusted overload protective device.

2.4.7.4 Protection of motors of ignition protection type Increased Safety “e”
For the overload protection of motors of ignition protection type Increased Safety “e”, the following regulations and  
standards apply.

 - IEC/EN 60947-1, IEC/EN 60947-2 and IEC/EN 60947-4-1 and IEC/EN 60947-8

 - IEC/EN 60079-14, Electrical installation in hazardous areas (other than mines), Sections 7 a and 11.2.1

Among others, the following protective equipment can be considered for use:

 - Current-sensing overload protective equipment with delayed release

 - Equipment for direct temperature monitoring with the aid of temperature sensors 

Protection by current sensing motor protective devices with delayed overload release

Overload protection for motors of ignition protection type “e” must be selected so that it monitors the rated current IN and can switch 
off a motor with a locked rotor at all poles within the heating time tE. The heating time tE is the time after which the permissible 
temperature of the motor is reached when the rotor is locked at service temperature. The overload protection must release according 
to its cold curve as in most cases the protective relays cool down already after a short break, while motors take much longer to cool 
down. The starting (locked-rotor) current IA and the heating time tE should be obtained from the rating plate of the motor.

The trip characteristics of the overload protection must always be available at the operating site or via Internet. The release 
characteristics should indicate the trip times tA with 3-pole loading, starting from the cold state as a function the starting current ratio 
IA/IN – at least 3 to 8 times. The actual trip times must lie within a tolerance band of ±20 % of the stated values.

The trip times tA of the overload protective devices must be smaller than the heating time tE of the motor to be protected for the IA/IN 
ratio given.

When selecting the overload relay, it should be noted that although a short tripping time tA reliably ensures shutdown within the 
heating time tE, the start up of the motor must be possible without any disruption.

IEC 60079-7 and EN 50 019 stipulate minimum values for the tE time of motors (Fig. 2.4 16).
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2Fig. 2.4 16

Heating time tE (minimum value) of motors and tripping time tA of a circuit breaker with motor protection characteristic as a function of 
the starting current ratio IA/IN 

 1 Minimum values for the time tE of motors in accordance with IEC 60079-7 and EN 50019

 2 Minimum values for the times tE of motors in accordance with recommendation of the

  Vereinigung Industrieller Kraftwirtschaft (German “Association of Industrial Power Utilities”)

 3 A motor to be protected with tE =15 s at IA/IN = 7.7

 4 Trip characteristic tA = f (IA/IN ) of a typical circuit breaker with motor protection characteristic of 

  trip class 10

 5 Starting current of the motor

Current-measuring overload relays for protection of Ex e – motors must be equipped with a phase failure protection.

Protection by temperature sensors

As an alternative to monitoring the current, the windings temperature can be measured directly. If overload protection is exclusively 
provided by the installation of temperature sensors, then the motor must be especially examined and certified. It should thereby be 
documented that the temperature sensors installed in the stator windings trip reliably, even when the rotor is locked, before the rotor 
reaches the critical temperature according to the ignition class. 

Direct temperature monitoring is usually realised with PTC thermistors. See also Sections 4.1.2.3 and 4.2.4.3.

Heavy-duty starting and high frequency of operation

Ex -motors with heavy-duty starting create additional requirements in hazardous areas. For starting times that would result in tripping 
of the protective device set to the tE-time, precautions are required to reliably avoid impermissibly high temperatures under all 
operating conditions. Thus for example heavy-duty starting from the cold state is permissible as long as it does not exceed 1.7 times 
tE-time and is specially monitored.

As the limit temperature of the respective temperature class may not be exceeded even during start-up, especially adapted motors or 
protective equipment must be selected.

In the case of motors that are frequently switched, there is also a danger that the permissible limit temperatures of the windings 
will be exceeded. A current-measuring protective device of the motor by itself is not good enough to protect the motor. Additional 
monitoring of the coils by temperature sensors can be the solution in this case. This is in turn only possible with machines in which the 
stator is critical. In this case, motors of ignition protection type ”Flameproof enclosures d” have an advantage as short-term exceeding 
of the limiting windings temperature according to the temperature class is not relevant from the viewpoint of explosion protection. 
The thermal limit in this case is determined entirely by the insulation material class (temperature class).



2

2.4.7.5 ATEX 100a (Directive 94/9/EC)
For EEx- applications within the EU and the EEA (EU plus Iceland, Liechtenstein and Norway) only devices and protection systems may 
be circulated that are certified accordingly under EU Directive 94/9/EC (ATEX 100a or ATEX 95). This also applies to Switzerland on the 
basis of the bilateral treaties with the EU.

Motor protective devices for the overload protection of motors of ignition protection type “e” are subject to these regulations. 
These include for example circuit breakers and motor protection relays that themselves are installed outside hazardous areas but 
that are required for the safe operation of the motors with respect to explosion risks, which are installed inside hazardous areas. 
Strict regulations are in force with respect to the inspection and certification of the devices, their labeling and measures relating to 
production control and quality assurance at the manufacturer.

In accordance with ATEX 100a, inspection and certification of devices performed by a recognized standards institute (“Notified Body”; 
for example the “Physikalisch Technische Bundesan-stalt Braunschweig PTB”) is required. In addition the “Notified Body” audits the 
production monitoring and quality assurance systems of the manufacturer. The certification of the manufacturer is subject to periodic 
renewal.

Device labeling according to ATEX

The protective devices are in accordance with ATEX 100a to be labeled as follows:

	 •	 Name	and	address	of	the	manufacturer

	 •	 CE-mark	supplemented	with	the	number	of	the	notified	testing	institution	

  (for example         0102 for PTB)

	 •	 Type	designation

	 •	 Serial	number,	where	applicable

	 •	 Year	of	construction	(or	code	for	the	year	of	manufacture)

	 •	 Mark			supplemented	with	specifications

  -  of the equipment group (for example II for miscellaneous areas with explosive atmospheres, not in mines)

  - of the equipment category (for example 2 for devices that may be used in zones 1 and 2, supplemented with the   
   letters G and/or D; G for explosive gas mixtures or D for dusts). For devices that are used for protection of devices in   
  the Ex-area but which themselves are not installed in the Ex-area, the 2 is placed in brackets 

   → for example    II 2 G or    II (2) G, Code number under ATEX.

	 •	 Devices	that	are	directly	used	in	an	explosive	atmosphere	receive	an	additional	code	number	to	reduce	the	risk	of		 	
  misunderstandings:

  → for example EEx e IIC T3, Code under CENELEC, “e” for Increased Safety, IIC for the explosions subgroup “Hydrogen”,   
 T3 stands for a maximum surface temperature of 200 °C.

	 •	 Number	of	the	ATEX	certificate	(e.g.	PTB	04	ATEX	3039;	a	“U”	at	the	end	of	the	ATEX	number	indicates	that	the	device		 	
  cannot be deployed alone as complete electrical equipment for the Ex-Area – i.e. for example only in conjunction with   
  a motor).

	 •	 Relevant	standard	(for	example	EN	60079-14	for	electrical	equipment	in	hazardous	areas	with	gas)

	 •	 The	application	instructions	associated	with	the	device	(trip	characteristics	etc.)	must	be	available	(for	example	via		 	
  Internet). The place of availability of information must be stated on the device.

2.4.7.6 IECEx and other approval schemes for hazardous areas
Much of the information in this section refers to ATEX standards. ATEX is a European-based approval scheme, but may not be accepted 
in some other parts of the world. Other common hazardous area standards include IECEx (mandatory in some countries, such as 
Australia) and NEC (USA).

Readers should refer to their local national standards for clarification. For IECEx see also www.iecex.com.
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3

3 Starting and switching motors
3.1 Selection criteria
Electrical motors must be accelerated from rest up to the operating speed with a starting device. In the case of variable speed drives, 
the motor controller must also manage the motor speed during operation. The motor and method of starting selected depend on the 
load torque, the desired starting characteristic (starting current, acceleration) and on the characteristic of the supply. See also Section 
1.7 with respect to the characteristic properties of induction motors as the most frequently used motors.

Main criteria for the selection of the starting method

When making the decision whether to use a

	 •	 direct-on-line	starter

	 •	 electromechanical	starter	for	the	starting	with	reduced	current	or

	 •	 electronic	motor	control	devices	(soft	starters,	inverters)

the following items should be taken into account to find a suitable solution from the points of view of application and productivity:

	 •	 How	high	is	the	torque	required	to	start	the	load?

	 •	 Can	transmission	components	such	as	belts,	gearboxes	or	chains	be	damaged	by	the	high	starting	torque	with	direct		 	
	 	 starting?

	 •	 Does	the	plant	require	gentle	and	continuous	acceleration	or	are	torque	peaks	permissible?

	 •	 Are	there	any	restrictions	with	respect	to	supply	loading?

	 •	 Do	technologically	more	complex	products	offer	additional	functions	for	optimisation	of	the	application	(for	example		 	
	 	 pre-warning	functions	of	motor	protection	relays,	mirror	contacts	for	safety	controllers,	communication	links	etc.)?

	 •	 In	addition	to	starting,	are	features	of	controlled	coasting	to	a	stop	or	braking	to	be	taken	into	account?

	 •	 In	addition	to	starting,	are	aspects	of	speed	control	to	be	taken	into	account	once	the	motor	has	started	(for	example		 	
	 from	process	engineering	or	energy	saving	perspectives)?

The selection of suitable starting methods is a critical factor in achieving optimum economic efficiency in every motor control 
application. Tab. 3.1 1 provides guidance with respect to the various methods for starting squirrel-cage induction motors. 

Kind of motor Starting procedures for squirrel-cage standard motors compared (typical values) Special squirrel-cage motors
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 3.2 Direct starting of squirrel-cage induction motors
The direct starting (Direct On Line, DOL) is the simplest and most cost-efficient method of starting a motor. This is assuming that the 
power supply can easily deliver the high starting current and that the power transmission components and the working machine are 
suitable for the high starting torques.

  

 Fig. 3.2 1

Example of a two-component starter for direct starting consisting of a motor protection circuit breaker and a contactor

With direct starting, the poles of contactor and motor protective device are connected to the pole conductors (Fig. 3.2 1) and the 
operating current of the motor flows through them. The motor protective device must therefore be adjusted to the rated operational 
current of the motor. 

The contactor is selected according to the rated operational current Ie and the respective utilisation category:

 - AC 3  Squirrel-cage induction motors: Starting, switching off during running

 - AC 4  Squirrel-cage induction motors: Starting, plugging, inching

Definition of utilisation categories see Section 1.1.

For AC 3 operation, allowance must always be made in practice for sporadic inching operations, for example during commissioning, in 
case of faults or in service work. Contactors from Rockwell Automation comply with these requirements and may be rated without risk 
according to AC 3 values; for the large majority of devices, the rated operational currents for the utilisation categories AC 3 and AC 4 
are the same.

A considerable proportion of AC-4 operations or exclusive AC 4 operation is in practice relatively rare. In such cases, a high frequency 
of operation is often required at the same time and a high electrical life span is expected. Thus the contactor must be selected 
according to these two criteria. In most cases a larger contactor must be used than would correspond to the maximum permissible AC 
4 rated operational current. See also Sections 2.3.6.3 and 2.3.7.

3.2.1 Starting time
The starting time is an important parameter in starter engineering, as the starting current can be many times higher than the rated 
currents of motor and switchgear and correspondingly places the latter under thermal loading. It depends on the torque of the motor 
and hence on the selected starting method, as well as on the torque characteristic of the load. The difference between the motor 
torque and load torque is the acceleration torque. In addition to the resistive torque of the drive, the inertial mass to be accelerated 
has a key influence on the time taken for motor starting.

The duration of so called no-load starting, i.e. starts without loading of the drive, typically lies, depending on motor size, in the time 
range of under 0.1 to around 1 s, starting under load (but without large flywheel masses) up to around 5 s. For centrifuges, ball mills, 
calenders, transport conveyors and large fans, the start times can extend to minutes. In the case of pumps and fans it should be noted 
that the pumped material (liquid, air) contributes to the effective inertial mass. The above given approximate values apply for direct 
starting. The times are correspondingly extended with starter methods with reduced starting current and torque.

With respect to the permissible starting time of the respective motor, the manufacturer’s documentation is definitive.

For the selection of contactors for heavy-duty starting, see Section 2.3.5.2.
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3.2.2 Reversing starters
In a reversing starter the motor is switched via two contactors, one for each direction. If the motor is started from rest, the contactor 
is selected according to utilisation category AC 3. Often however the motor direction is changed while it is running (plugging), which 
means a correspondingly higher loading of the contactors and hence requires selection according toutilisation category AC 4. Direct 
reversing requires a reversing delay between the contactors – for example by means of a short-term delay  – of around 40 ms, to 
prevent short-circuits between phases. In addition to electrical interlocking of contactors of reversing starters, mechanical interlocking 
is recommended.

Corresponding precautions as for reversing starters are required for plugging with stopping at standstill. In this case when the motor 
comes to rest, the braking contactor (for example controlled by a speed sensor) is switched off and the motor is hence disconnected 
from the supply.

    

Fig. 3.2 2

Reversing starter with motor protection-circuit breakers and mechanical interlock: Diagram and layout

3.3 Star-delta (Y-Δ, wye-delta) starting
Star-delta (in North America the designation “wye-delta” is commonly used instead) starting is the simplest method for reducing the 
starting current of a motor. The technique can be used with all squirrel-cage induction motors that are delta-connected for normal 
operation and whose windings ends are individually connected to terminals. The reduction of the motor current causes a reduction of 
the starting torque. Star-delta starting is therefore especially suitable for drives that are not loaded until after starting. The starting time 
is longer than with direct starting, which is especially apparent when driving larger inertial masses.

A distinction should be made between

 -  normal star-delta starting

 -  star-delta starting with closed transition

 -  amplified star-delta starting.

3.3.1 Normal star-delta starting
Circuit connections and switching-over procedure

On initiation of starting, the supply voltage is applied to the star-connected motor windings. The starting torque and the starting 
current in this circuit are approx. 30 % of the values for delta connection. Because of the reduced torque in star connection, the motor 
does not quite reach the rated speed. After star-connected start-up, the windings are switched-over to delta connection.
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Fig. 3.3 1

When starting in star connection, the phase voltage is applied to the motor windings and a windings current of IWY = IWΔ/√3 flows. 
Because of vectorial addition of the windings currents in delta connection IeY = IeΔ/3.

On switching from star to delta operation, there is a current surge, whose magnitude depends on various factors. In the figures below, 
typical cases are illustrated.

Fig. 3.3 2 shows the ideal case for such a switchover. The motor nearly reaches its rated speed in the first stage, as the load torque 
during starting is relatively low. The switching-over current surge is around the same size as the starting current.

 

Fig. 3.3 2

Typical characteristic of current and torque for star-delta starting

I = motor current

Ie = rated operational current of the motor

IΥ = current in star connection 

IΔ = current in delta connection

IA = current characteristic with star-delta starting

T = torque

Te = rated operational torque of the motor

TΥ = torque in star connection

TΔ = torque in delta connection

TL = load torque

n = speed

nS = synchronous speed
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Switching-over itself is usually automatic (rarely manual) and performed by a timing relay set to the required operating period of 
the star contactor. Between switching off of the star contactor and the making of the delta contactor there must be a sufficient time 
interval to be certain that the breaking arc in the star contactor is quenched before the delta contactor is switched on. If switching-
over is too rapid, the breaking arc causes a short-circuit and the short-circuit protec-tion disconnects the circuit (see Fig. 3.3 3).

On the other hand, when the switching interval is too long, the motor speed falls during the de-energised interval, depending on 
inertial mass and load, so strongly that the in-rush current in the delta connection is very high, defeating the purpose of the star-delta 
start up (Fig. 3.3 4).

A sufficiently long switching interval between breaking of the star contactor and making of the delta contactor is achieved in small 
contactors with short pull-in and dropout times by electronic timing relays with a switching-over delay of approx. 50 ms. Larger 
contactors have an inherent switching delay of > 25 ms. In this case, timing relays without additional switching delay may be used. 
The switching interval then is of the optimum length. To avoid phase short-circuits, the star and delta contactors are additionally 
mechanically interlocked.

If the delta contactor is switched via an auxiliary contactor (e.g. at low control voltages), no switching-over delay is required on the 
time relay. A switching interval of adequate length results from the sum of the making delay times of the auxiliary and delta contactor.    

 Fig. 3.3 3

A switching interval that is too short results in a short-circuit via the switching arc – the short-circuit protection is activated and breaks 
the circuit

Fig. 3.3 4

With switching intervals that are too long, the speed falls again behind → direct starting in delta connection

Faults like shown in Fig. 3.3 3 and Fig. 3.3 4 can also be avoided with the interruption-free (closed transition) star-delta circuit 
(Section 3.3.4).
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When the load torque is too high the star-connected motor only accelerates to a fraction of the speed and “sticks” at this speed. The 
switching process would proceed as in Fig. 3.3 5 and the purpose of the star-delta start up would not be achieved.

Moreover this condition means that the contactors have to switch off a multiple of the motor rated current. In the example in  
Fig. 3.3 5 the breaking current is around 1.3 ∙ Iemotor. The star contactor is selected according to Ie(Y contactor) = 0.34 ∙ Iemotor  
(see below) and must accordingly switch off 

     1.3/0.34 ≈ 4 ∙ Ie (Y contactor)

In practice this means AC-4 operation with a correspondingly reduced electrical life span. In this case a motor for amplified  
star-delta starting (Section 3.3.5) should be used.

Fig. 3.3 5

Switching-over at speed- that is too low

Selecting the starter components

With star-delta circuits in accordance with Fig. 3.3 6 in delta mode the circuits of main contactor, delta contactor and motor 
protection relays are connected in series to the motor windings 

(Fig. 3.3 7). The devices are therefore loaded with the phase current Ip:

        Ip =  Ie/ √3 = 0.58 ∙ Ie 

   

Fig. 3.3 6

Starter for normal star-delta starting

Fig. 3.3-6
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 Fig. 3.3 7

Contactor contacts and motor protection relays are connected in series to the motor windings in delta connection

K1M Main contactor

K2M Delta contactor

F1 Thermal relay

Ie Rated operational current of the motor

Ip Phase current

For normal star-delta starting, the switchgear should be rated for the following rated operational currents:

Main contactor K1M = 0.58 ∙ Ie

Delta contactor K2M = 0.58 ∙ Ie

Star contactor K3M = 0.34 ∙ Ie

Thermal relay  F1    = 0.58 ∙ Ie → Motor protection in Υ- and Δ- operation, with F1 in 

   Pos. A (Fig. 3.3 6), tA ≤ 15 s (normal starting)

Circuit breakers Q1    = 1.00 ∙ Ie → Restricted motor protection in Υ- operation,    
   with Q1 in Pos. B (Fig. 3.3 6), tA > 15 … 40 s 

The selection of contactors according to these values applies for starting times of maximum 15 seconds and 12 starts per hour. With 
heavy-duty starting or higher frequencies of operation, a larger contactor K3M, possibly also K1M, should be selected  
(see Sections 2.3.5.2 and 2.3.6).

Equally the electrical life span of contactors, especially of the star contactor, should be reviewed (see Section 2.3.6.3).  
If e.g. switching-over occurs at too low a speed, the star contactor has to break many times its rated current (Fig. 3.3 5).  
This would strongly reduce its electrical life span.

3.3.2 Motor connection for clockwise and counterclockwise direction of rotation
When the delta contactor connects at adverse vectorial positions of the supply voltage and the rotor field, transient processes could 
occur in the motor that could lead to larger current peaks than at switching-on the delta-connected motor . This can result in the 
making capacity of the contactors being exceeded with as a consequence welding of contacts.

The transient currents can be reduced by appropriate wiring of the main circuit (Fig. 3.3 8). Besides the load on the contactors, this 
also reduces the dynamic stress on the windings-heads in the motor.

Lower transient currents peaks with correct wiring (clockwise rotation)

 

Fig. 3.3 8

Correct connection of motor phases for clockwise rotation 
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During the de-energised switching interval, the rotor falls back against the rotating field of the power supply. Its magnetic  
field induces a decaying residual voltage in the stator – in the voltage phasor diagram Fig. 3.3 9 for the pole conductor  
L1 entered as UL1’-N.

When connecting to delta (Fig. 3.3 8 and Fig. 3.3 9) the mains voltage UL1-L3 is applied to the stator winding, across which this residual 
voltage is still present. The differential voltage ∆U is relatively small, thanks to the favorable vectorial position of the residual voltage 
UL1’-N and the supply voltage UL1-L3 that are approximately oriented in the same direction. Thus the current surge generated by this 
resultant voltage will also remain small.

 

Fig. 3.3 9

Phasor diagram for star-delta with correctly connected motor phases for clockwise rotation

High transient current surge with incorrect wiring

The motor also turns clockwise when the terminals are connected according to Fig. 3.3 10.

  

Fig. 3.3 10

Incorrect connection of the motor phases also produces clockwise turning

A decaying residual voltage acts again with lagging phase position in the stator during the switching interval. On switching to delta, 
the phase winding with the phasor UL1’-N is connected to the supply phase UL1-L2 . These two voltages however have totally different 
vectorial directions, the differential voltage ∆U is high and results in a correspondingly high transient current surge.

Switching from star to delta produces the phasor diagram Fig. 3.3 11

 

Fig. 3.3 11

Phasor diagram for connections of the motor phases according to Fig. 3.3 10. This produces a high transient current surge because of 
the adverse vector position.
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Counterclockwise sense of rotation

To run the motor in the counterclockwise direction, it is not enough to swap around two phases at any point. This would produce the 
same relationships as described above. In order to keep the transient current surge from star to delta connection as small as possible 
the wiring must be arranged as in Fig. 3.3 12.

 

Fig. 3.3 12

Correct connection of the motor phases for counterclockwise rotation of motor

3.3.3 Influence of the third harmonic on motor protection relays
In motors, in which there is relatively little core iron (e.g. refrigeration motors, submersible pump motors etc.), with delta connection 
the third harmonic and its harmonics are excited in the windings as a consequence of iron saturation. Because of the triple frequency 
the currents of the third harmonic have the same vector position in all three windings. This harmonic current basically flows in a circle 
through the windings and is not noticeable in the feeding lines. With star connection, no third harmonics can form as the motor star 
point is not connected to the mains.

Experience shows that the harmonic current values can be up to 30 % and more of the basic current. With measuring instruments 
that show the true r.m.s. value, the r.m.s. value of the entire windings current can be measured; on the other hand, the harmonic 
component cannot be correctly measured by instruments that only show the mean value.

The third harmonic contributes to heating of the motor windings. This is taken into account by the motor manufacturer so that the 
rated load is not compromised. Therefore motor protective devices for direct starting in delta mode should always be set to the motor 
rated operational current (= current in feeding lines).

In delta mode in a star-delta starter the motor protective device is connected in series to the motor windings (Fig. 3.3 7). If it is 
normally set to 0.58 ∙ Ie it may release prematurely due to the additional harmonics. In these cases the actual r.m.s value of the 
windings current should be measured and the setting of the protective device should be increased by the percentage of the harmonic 
current. This applies for motor protective devices such as bimetal relays, whose trip characteristic is based on the r.m.s. value of the 
current.

Electronic motor protective devices frequently use measuring principles that differ from the above (for example based on the peak 
value of the current). In these cases, the settings adjustment must be made on the basis of practical tests.

3.3.4 Uninterrupted star-delta starting (closed transition)
With this circuit (Fig. 3.3 14 and Fig. 3.3 15) the decay of the motor speed during star-delta switching is avoided and the subsequent 
current peak is kept small.

Before the star contactor is opened, a fourth (transition) contactor K4M makes the motor circuit via resistances in delta.  
This means that the motor current is not interrupted during switching-over (Fig. 3.3 13) and the motor speed hardly falls.  
The delta contactor K2M then establishes the final state of operation and drops out the transition contactor K4M.

As the normal star-delta circuit, this circuit is only suitable for starting with small load torques.
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Fig. 3.3 13

Oscillogram of star-delta starting with closed transition

 

Fig. 3.3 14

Star-delta starter for closed transition

 

Fig. 3.3 15

The four switching steps of the closed transition star-delta – circuit

 A Starting in star – connection

 B Switching-over: Star and transition contactors are closed

 C Switching-over: Delta circuit via transition contactor and resistors

 D Operation in normal delta circuit 
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Rating of starters 

Main contactor K1M 0.58 ∙ Ie

Delta contactor K2M 0.58 ∙ Ie

Star contactor K3M 0.58 ∙ Ie

Transition contactor K4M 0.27 ∙ Ie (typical value, varies with R1)

Overload relay F1 0.58 ∙ Ie

Transition resistor R1 (0.35...0.4) ∙ Ue/Ie

  The factor should be selected from the stated range so that a 

  standard resistance value results.

Unlike in the normal star-delta circuit, the star contactor in the starter for closed transition has the same rating as the main and delta 
contactor. This is for two reasons:

 -  The K3M star contactor must break the star current of the motor and of the transition resistances. A current of approx.  
  1.5 ∙ Ie flows in the transition resistors. Therefore a correspondingly higher contact rating is required.

 -  The closed transition star-delta circuit is often used in plants with higher frequencies of operation, in which also a longer   
  electrical life span is required.

The resistors are only loaded for a maximum of 0.1 seconds (short-time duty). However in most cases only the continuous load 
capacity of the resistors is known. For wired ceramic-tube resistors the continuous load capacity PR required for selection can be 
calculated by help of the following approximation formulas:

PR ≈ Ue
2/(1200 ∙ R) [W] for max. 12 operations/h

PR ≈ Ue
2/(500 ∙ R) [W] for max. 30 operations/h 

Notes

In a star-delta circuit with closed transition, no excessive switching current surge can be produced. With large inertial masses, it should 
also be ensured that the motor is correctly wired for clockwise or counterclockwise rotation (see Section 3.3.2), to prevent damage by 
torque surges.

3.3.5 Amplified star-delta starting
With a large load torque, an adequate speed is not achieved in the normal star connection because of the reduction of the starting 
torque of the motor (see Fig. 3.3 5). A larger motor torque can be achieved with amplified star-delta starting. That being said, the 
starting current also increases with the motor torque (see Tab. 3.1 1).

Two starting methods are possible:

 - Mixed star-delta starting 

 - Part winding star-delta starting   

For both methods, motors with suitable windings tappings are required.

Mixed star-delta starting

In this case the motor windings are usually divided into two equal halves. On starting, one half of the part-windings is delta-connected, 
the other is star-connected (Fig. 3.3 16). The starting current in star-connection is approx. (2 ... 4) ∙ le. This generates a correspondingly 
larger starting torque.
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Fig. 3.3 16

Mixed star-delta starting

Circuit diagram and connections of motor coils during starting (Y) and in operation (∆)

3.3.6 Part-winding star-delta starting 
In this case, too, the motor windings are subdivided. In the star connection, only the main winding – one part of the entire winding – 
is used (Fig. 3.3 17). The starting current in star connection is (2 ... 4) · le, depending on tapping, from which a larger breakaway torque 
results. 

    

Fig. 3.3 17

Part-winding star-delta starting

Circuit diagram and connections of the motor windings during starting (Y) and in operation (∆)
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Ratings of the starter components

With the exception of the star contactor, contactors and motor protective devices have the same ratings as with the “normal”  
star-delta circuit (see Section 3.3.1). The star contactor should be selected for (0.5 ... 0.58) · le because of the larger starting current.

Notes

A sufficiently long switching interval for transition from star to delta operation should be ensured, in accordance with Section 3.3.1. A 
closed transition star-delta connection in accordance with Section 3.3.4 is possible in both cases. With very large load-torques it may 
even be necessary. The transition resistor and the transition contactor should be rated as described there.

The rules in accordance with Section 3.3.2 apply for the connections.

3.4 Auto-transformer starting
3.4.1 Circuit and function
An auto-transformer starter makes it possible to start squirrel-cage induction motors with reduced starting current, as the voltage 
across the motor is reduced during starting. In contrast to the star-delta connection, only three motor leads and terminals are required. 

On starting, the motor is connected to the tappings of the auto transformer; transformer contactor K2M and star contactor K1M are 
closed. The motor starts at the voltage reduced by the transformer, with a correspondingly smaller current.

By this means the feeding current in comparison to direct starting would be reduced by the square of the transformer voltage ratio; 
nevertheless, it is in most cases noticeably higher, as it also covers the relatively high transformer losses. Depending on the tapping 
and starting current ratio of the motor, the starting current lies at (1 … 5) ∙ le. In contrast, the motor torque falls with the square of the 
voltage across the windings. Auto-transformers usually have three available taps in each phase (for example 80 %, 65 %, 50 %), so that 
the motor starting characteristic can be adjusted to the load conditions. 

If the motor has reached 80 ... 95 % of its rated speed (depending on the desired reduction of the current surge after switching-over), 
the star contactor K1M on the transformer is opened. Now the transformer part-windings act as chokes. The motor voltage is only 
reduced by the chokes below the supply voltage and the motor speed does not fall. The main contactor K3M closes via auxiliary 
contacts of the star contactor and applies the full supply voltage to the motor. For its part, the main contactor K3M drops out the 
transformer contactor K2M. The entire procedure is thus uninterrupted.

 

Fig. 3.4 1

Auto-transformer starter with uninterrupted switching over (Korndörfer starting method)

3.4.2 Rating of the starter
The main contactor K3M and the motor protective device F1 are selected according to the motor rated operational current Ie. 
Transformer contactor and star contactor are only briefly closed during starting. Their rating is determined by the required contact 
breaking capacity, as they must reliably cope with any unforeseen disconnection during start up. The star contactor  
also operates with every start-up during switching-over. The values of the rated operational currents for the transformer contactor 
K2M, depending on the start time and starting current, are between (0.3 … 1) ∙ le, for the star contactor between  
(0.45 … 0.55) ∙ le.
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3.5 Starting via chokes or resistors
The series-connected chokes (Fig. 3.5 1) or resistors (Fig. 3.5 2) reduce the voltage at the motor and hence also the starting current. 
The starting torque is reduced by around the square of the current.

3.5.1 Starting via chokes
At rest the motor impedance is small. Most of the supply voltage drops across the series-connected chokes. The breakaway torque 
of the motor is therefore strongly reduced. With increasing speed, the voltage across the motor increases because of the fall of the 
current consumption and the vectorial voltage distribution between the motor and the reactance connected in series. Hence the 
motor torque also increases. After the motor start-up, the chokes are shorted by the time-delayed main contactor K1M and the 
starting contactor K2M is dropped out.

 

Fig. 3.5 1

Motor starting via series-connected chokes

3.5.2 Starting via resistors
The basic circuit diagram is the same as described in Section 3.5.1, only that the chokes are replaced by lower-cost resistors.

 

Fig. 3.5 2

Motor starting via series-connected resistors

With this method, the starting current can only be slightly reduced, as the motor torque falls with the square of the voltage and the 
voltage across the motor, other than with starting via chokes, only increases slightly with increasing speed. It is more advantageous to 
reduce the series-resistance during starting in steps. This reduces the voltage across the resistor and increases that across the motor. 
The expenditure on hardware is thereby significantly larger.

A simpler solution are enclosed electrolytic resistors with a negative temperature coefficient. Their ohmic resistance decreases 
automatically during starting because of heating by the starting current.
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3.6 Stator resistance soft starting 
3.6.1 Circuit and function
This method is used with relatively small induction motors with squirrel-cage rotors to achieve a soft starting effect. The starting 
torque is reduced because an ohmic resistance is connected in the supply line of one phase (Fig. 3.6 1). This means that the motor 
is asymmetrically supplied, resulting in a more gentle, surge-free motor start-up. The motor current is not reduced in the two phases 
without series resistance. Modern solutions make use of controlled power semiconductors instead of resistors.

Fig. 3.6 1

Stator resistance soft starting for gentle motor starting

Note

A motor protective device without differential release must be used, as it would otherwise operate during start-up.

3.7 Pole-changing motors 
3.7.1 Speed change by pole changing
The number of poles determines the rated speed in asynchronous motors at a given supply frequency. If the stator windings are 
designed for two or more different pole numbers, the speed can be changed in just as many steps by switching-over.

The Dahlander circuit that with only one winding and six terminals supports two pole numbers and hence speeds in the ratio 1:2 is 
especially economical. The rated powers and torques of the two steps are thereby in a certain relationship to each other, depending 
on the circuit version. The Dahlander winding is divided into individual windings groups, stepped according to the smaller pole 
pitch. When current flows through each windings group in the same direction, the higher pole number is generated, and when the 
current direction is reversed in each second windings group, the lower pole number is generated. By repetition of the same windings 
arrangement from pole to pole, a very good windings symmetry is achieved.

A special type of Dahlander circuit is the PAM circuit (pole amplitude modulation). In PAM motors, an asymmetry of the field harmonics 
is accepted and the windings are grouped so that the resulting pole numbers are in ratios other than 1:2 (e.g. 6/4-pole or 8/6-pole).

Motors in PAM circuits, like those in Dahlander circuits, only have six terminals. For both winding types, the same versions of the 
external circuit diagram can be used. An additional star point contactor is always required for the YY stage, in addition to the two 
feeding contactors of both steps.

Pole changing can also be achieved by regrouping the windings branches. This is known as phase mixing or phase modulation. In this 
case the winding along the periphery is divided into coil blocks. Depending on the number of these blocks, double or multi-stage 
pole changing can be performed. Three terminals are required per speed level.

With pole changing by phase modulation, the connection diagram provided by the motor manufacturer should be consulted when 
selecting the external circuit layout and the switchgear. Either only one feeding contactor (for example YYY/YYY circuit) is required per 
stage or in addition a supplementary bypass contactor (for example ∆/∆∆ circuit).

In Tab. 3.7 1 and Tab. 3.7 2 a summary is provided of the most common arrangements and circuit layouts of stator windings for pole-
changing motors.
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 Tab. 3.7 1

Pole-changing motors with 2 speeds

Tab. 3.7 2

Pole-changing motors with 3 or 4 speeds 

3.7.2 Ratings of starters for pole changing
Pole-changing motors often have, especially at lower speeds, considerably less favourable efficiency and power factors (cos φ) than 
standard motors. The intake current is therefore usually higher than that assigned to the corresponding power in the selection tables. 
Therefore the feeding contactors of the individual steps (Fig. 3.7 1) for all arrangements and circuit layouts (separate windings, 
Dahlander, PAM, phase modulation circuits) should not be rated according to the rated operational powers, but according to the rated 
operational currents specified by the motor manufacturer. Selection is in accordance with utilisation category AC 3; for steps with 
inching operations, the supply contactor should be suitable for AC 4.

The star point contactor of the YY-step (K3) in Dahlander circuits, carries, depending on the circuit variation, exactly or approximately 
half the current of the feeding contactor for this step:

IeK3 = IeYY/2 [A]

Selection is always in accordance with AC 3;
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The star point contactor in a PAM circuit, because of the asymmetrical phase currents and of the harmonic content, should have the 
same rating as the feeding contactor of the YY step.

The rating of contactors in phase modulation circuits is based on the specifications of the motor manufacturer with respect to the 
rated operational current.

 

Fig. 3.7 1

Circuit diagram for motors in Dahlander or PAM circuits

For all arrangements and circuit layouts, a separate motor protective device should be provided for the thermal overload protection of 
the motor in each step that is adjusted to the respective rated operational current.

As a change of current direction occurs in Dahlander, PAM and phase modulation circuits when the pole number is changed in a 
section of the windings, a de-energised interval is necessary during switching over to prevent unacceptably high switching current 
surges. If the making delay of the feeding contactors of both steps is smaller than 20 ms, electrical interlocking must be performed 
with a switching interval (approx. 30 … 50 ms). When switching over between two separate windings, the currents that are produced 
are only in the range of the starting currents that the switchgear can easily cope with.

Note

Normally with multi-speed motors, a common short-circuit protection is provided for all steps, that is rated according to the largest 
rated operational current. It must be checked whether this short-circuit protection is also permissible for the selected feeding 
contactor of the smaller step. Otherwise a larger contactor should be selected.

3.7.3 Rating of the starter for steps with star-delta starting 
If a winding is designed for six terminals, star-delta starting can be provided in this step. Instead of the feeding contactor, a star-delta 
contactor combination is required. This is rated according to the rated operational current of the relevant step.

A reduction of the starting current can also be achieved in star-delta starting in Step l with the Dahlander circuit Δ/YY (Step l: Y- Δ; Step 
II: YY). The circuit can be realized with only four contactors (Fig. 3.7 2).

The contactors are rated according to the rated operational currents IeI (Step l) or IeII (Step lI). For the contactors K3 and K4, the higher 
value applies (Tab. 3.7 3).
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Tab. 3.7 3

Rating of starters for steps with star-delta starting

 

Fig. 3.7 2

2-step star-delta starter for motors in Dahlander circuit (with nine terminals), star-delta starting in Step I

3.8 Starting wound-rotor motors
With slip-ring motors (wound-rotor motors) the starting current can be limited to (1,1 ... 2,8) · Ie with high load torque and at extended 
starting times. This means that heavy-duty starting is also possible with supplies with poor loading capacities. See also Section 1.7.1.1.

Slip-ring motors have rotor windings, whose three ends extend over the slip rings. When resistors are connected in the rotor circuit, 
the starting current and hence the torque are affected (Fig. 3.8 1). The starting resistors in each rotor phase are shorted stepwise by 
contactors during start-up.

(Fig. 3.8 2). In automatic starting arrangements, the contactors of the individual starting steps are controlled by adjustable time relays. 
In so-called Combi-motors, the rotor resistances are switched dependent of speed by centrifugal switches.

 

Contactor Function Load

K1
K2

Feeding contactor
Feeding contactor 

Step I
Step II 

(Y-Δ)
(YY) 

IeI

Iell

K3 Delta contactor
and
1st star contactor 

Step I

Step II

(Y-Δ)

(YY)

0.58 · IeI

and
0.5 · Iell

K4 Star contactor
and
2nd star contactor

Step I

Step II

(Y-Δ)

(YY)

Ca. 0.33 · IeI 

and
0.5 · Iell
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Fig. 3.8 1

Torque characteristic on starting of a slip-ring motor

T0 … T4 Torque characteristics of the individual starting steps

Tav-acc Mean starting torque

A starter for a slip-ring motor can be equipped with one or more steps. On the one hand, this allows the starting torque to adjust to 
the working machine and, on the other, the current peaks to the supply conditions.

Tab. 3.8 1

Example of application: Starting motors under load

Note

With slip-ring motors, also the speed can be controlled with the resistors in the rotor circuit (resistance or slip control; e.g. for crane 
motors). This requires a correspondingly designed control circuit and ratings of the contactors and resistors for variable speed 
operation.  

 

Fig. 3.8 2

Circuit diagram with three-step, automatic shorting of external rotor resistors

Half-load starting Full-load starting

Number of resistance steps 2 3 4 2 3 4

Max. starting current Imax/Ie 2.2 1.7 1.3 2.8 2.3 1.8

Min. starting torque Tmin/Te 0.5 0.5 0.5 1 1 1

Starting time s 4 … 60
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Ratings of the starter (start-up mode see Tab. 3.8 2)

The stator contactor K1M (feeding contactor) is selected, corresponding to the rated operational current Ie of the motor  
under utilisation category AC 2. A distinction is made in rotor contactors between step contactors (K3M, K4M) and the final  
stage contactor (K2M). The rotor contactors only have to connect and conduct the current briefly. Their poles are usually  
delta-connected. The final stage contactor (K2M) must be designed for continuous duty AC 1; the loading is 0.58 · Ie rotor.  
The step contactors (K3M, K4M) operate in starter circuits in short-time duty mode. They can therefore be rated for this  
short-term loading or according to their making capacity.

 Ie (stator) Rated operational current of the motor (stator)

 Ie rotor Rated operational current of the rotor

 Iav rotor Mean rotor current during starting

Tab. 3.8 2

Factors for the rated operational currents of the motor for contactor selection according to the AC 2 catalogue values

Permissible rated voltage for the rotor contactors

As the rotor contactors are only under voltage briefly during starting, in accordance with IEC 60947-4-1, 5.3.1.1.2 the rated operational 
voltage of the rotor Uer (rotor standstill voltage) may exceed the rated isolation voltage Ui of the contactor by 100 %. Contactors for 
690 V may therefore be used up to a rotor standstill voltage of 1380 V.

3.9 Electronic soft starters 
Soft starters serve for a continuous adjustment of the starting characteristic of three-phase asynchronous motors to the requirements 
of the load by controlling the voltage across the motor and enable for an optimum integration of the drives in process control by 
means of various complementary functions.

While when star-delta starters are used, the starting torque and starting current can be fix reduced to around a third, with electronic 
soft starters the reduction can be set within a wide range. It should be noted that the motor torque of a soft starter falls with the 
square of the voltage and current reduction. With the same starting current as with a star-delta starter in star connection (= 1/3 IAΔ), 
with a soft starter the motor torque falls to 1/9 TAΔ in comparison to 1/3 TAΔ for star-delta. See also Section 1.7.1.3.

With the conventional starting procedures such as direct on line starters, starting transformers or star-delta starters, the motor, supply 
and the entire drive chain is loaded by switching transients. Each switching procedure also means a rapid current change (transient 
current peaks) and hence generates high torque peaks in the motor. Electronic equipment with power semiconductors can prevent 
these transient effects and reduce the loading of power supply and drive.

Rating for starting with half-load full-load heavy duty

Iav rotorIe rotor 0.7 1.4 2.0

Stator contactor K1M Ie AC-2 Ie (stator) Ie (stator) Ie (stator)

Rotor contactors (poles connected in delta)

Final stage contactor K2M Ie AC-1 0.58 · Ie rotor 0.58 · Ie rotor 0.58 · Ie rotor

Step contactors 2 steps K3M 0.20 · Ie rotor 0.35 · Ie rotor 0.50 · Ie rotor

3 steps K3M, K4M 0.18 · Ie rotor 0.30 · Ie rotor 0.43 · Ie rotor

4 steps K3M … K5M 0.15 · Ie rotor 0.25 · Ie rotor 0.35 · Ie rotor

Overload relay F1 Ie (stator) Ie (stator) Ie (stator)

Max. starting time per step 15 s 12 s 12 s

Max. frequency of operation (starts per hour) 120/h 30/h 12/h
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The following features and options are characteristic in the use of soft starters:

	 •	 Extended	setting	range	of	the	starting	characteristic	or	selection	of	various	starting	characteristics	for	an	optimum		 	
  adjustment to the requirements of the working machine

	 •	 Infinite	variable	characteristic	of	current,	voltage	and	torque.	No	transient	current	peaks

	 •	 Motor	connection	with	only	three	lines	with	control	in	the	motor	supply	lines

	 •	 Increased	rated	power	of	the	soft	starter	(factor	1.73)	with	control	in	the	windings	circuit	and	motor	connection	 
  with six lines

	 •	 By-passing	of	power	semiconductors	after	motor	start	to	reduce	the	permanent	losses

	 •	 Limited	number	of	starts	per	hour	depending	on	starting	conditions	and	thermal	specifications	of	the	soft	starter

	 •	 Extended	coasting	to	stop	and	braking	of	drives

	 •	 Crawl	speed	for	positioning

	 •	 Diagnostic	and	early	warning	functions	such	as	overload,	underload,	locked	rotor	etc.

	 •	 Integration	in	a	communication	network

	 •	 Integrated	(motor)	protection	functions

	 •	 Current	harmonics	during	the	starting	time	by	phase	control

	 •	 Drives	with	soft	starters	require	for	maintenance	work	on	the	motor	a	series	disconnecting	device	(for	example		 	
  disconnector switches, circuit breakers with isolating function).

Soft starters are available in a variety of different designs, each with specific technical characteristics. For the selection of a  
device for a specific application the technical literature of the manufacturer and its technical support have to be observed.  
See also IEC 60947-4-2 [5] and [17]. For specific aspects of high efficiency motors see 1.7.1.2.1.

3.9.1 Voltage ramp versus current limitation
The basic mode of operation of soft starters is to control the voltage across the motor by phase control. Usually the phase control is 
performed in 3 phases and in both current half-cycles by means of triacs or antiparallel connected thyristors. Economical solutions use 
controlled semiconductors in only two or even only one single phase. The resulting asymmetries create disadvantages with respect 
to the available torque related to the current consumption and for example an increasing loading of the motor bearings because of 
torque asymmetries. The single phase controller corresponds to the stator-resistance starting circuit (see Section 3.5).

The voltage across the motor can for example be controlled by

	 •	 a	(selectable)	voltage	ramp	or

	 •	 a	fixed	(reduced)	voltage	(quasi	current-limiting)

	 •	 in	relation	to	a	feedback	variable	such	as

  o motor current (current limitation) or

  o  speed (start following a speed characteristic)

Depending on the method chosen, typical torque and speed characteristics for starting are produced (Fig. 3.9 1). When starting with a 
voltage ramp and especially when starting with current limitation, large acceleration torques in the range of the breakdown torque are 
generated towards the end of the starting period.

  

Fig. 3.9 1

Current and torque characteristics for starting

In the following a more detailed discussion of the characteristics of various available soft starter functions is presented.
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3.9.2 Voltage ramp
The voltage across the motor is linearly increased during a settable time, starting from an adjustable initial value (Fig. 3.9 2).  
The starting current and the starting torque, and hence the acceleration, adjust themselves in accordance with the voltage ramp and 
the torque characteristic of the load. This method is especially suitable for load-free start-ups and for working machines with increasing 
torque requirement at increasing speed (drives with larger inertial masses, fans etc.).

 

Fig. 3.9 2

Soft start with voltage ramp

For drives with variable loading at the start – for example processing machines that normally start up in a load-free condition, but 
which can be under load due to a fault – soft starters with two voltage ramps are available (Fig. 3.9 3). The initial voltages and starting 
times of ramps are separately adjustable and hence can be adapted to both operating states. It is possible to switch between both 
ramps as required.

 

Fig. 3.9 3

Soft starter with changeable voltage ramp for various loading states at start.

3.9.3 Kickstart
Many drives have a high breakaway torque at rest, because for example bearings surfaces may  generate high initial friction.  
This requires a short period of increased starting voltage at the beginning of the start-up. As soon as the drive begins turning,  
the torque requirement decreases strongly and the start can be continued with a lower voltage. Soft starters with kickstart function 
offer the required functionality (Fig. 3.9 4).

 

Fig. 3.9 4

The kickstart function briefly increases the voltage at the beginning of a start-up to overcome the breakaway torque of the drive.
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3.9.4 Current limitation
For starts with current limitation, the starting current is adjustable. The supply load can hence be adjusted to local requirements – for 
example, of the electricity utility. The motor current is measured in the soft starter and the motor voltage adjusted in accordance 
with the set current limitation. The available motor torque falls with the square of the voltage or current. With strong current 
limitation, a small starting torque is thus available (Fig. 3.9 5 and Fig. 3.9 1).

A simplified version just sets a fixed reduced voltage during starting.

 

Fig. 3.9 5

During starting with current limitation the starting current can be adjusted to the supply conditions

3.9.5 Soft stop
With some drives it is desirable to also control the stoppage of the motor with a soft stop instead of a possible abrupt stop when 
the motor voltage is disconnected. This may for example be the case with conveyor equipment, in which sudden stopping could 
result in the transported goods being displaced or falling over. Soft starters with an adjustable voltage ramp upon stopping are one 
suitable solution. For pump controllers, see Section 3.9.6.

 

Fig. 3.9 6

Softstop function with adjustable coasting time

3.9.6 Soft starters for pump controls
In the case of rapid changes of the speed of liquids – whether at acceleration or braking – hydraulic hammer and cavitation effects 
can arise in large centrifugal pump systems that subject the systems to heavy mechanical stress and generate corresponding 
acoustic side effects. The mechanical impacts result from the fact that liquids cannot be compressed and the pressure changes in 
the pipe systems resulting from changes in the speed of the liquid. In the acceleration process the inertial mass of the medium to be 
accelerated (or decelerated) must be taken into account.

To avoid the problems described above, a slow change in the flow rate of the fluid is required during starting and stopping. During 
starting, this requires control of the motor voltage so that a small, constant acceleration torque matched to the specific plant 
requirements is produced that towards the end of starting makes a gentle transition to the operating point. The characteristics of 
normal soft starters with voltage ramp or with current limitation only partially fulfill these requirements. The special pump control 
characteristic of  Rockwell Automation soft starters offer an appropriate solution (Fig. 3.9 7).
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Fig. 3.9 7

The pump control function ensures that the liquid is accelerated in a gentle manner

When a centrifugal pump is allowed to naturally come to a halt, the counter-pressure of the pumped medium usually results in 
abrupt braking and the associated hydraulic surges, which subject the system to heavy mechanical stress. A normal soft stop by linear 
reduction of the motor voltage would reduce the problem somewhat but not completely remove it. The Rockwell Automation pump 
control function with soft stop reduces the motor voltage so that the flow-rate of the liquid continuously decreases and hydraulic 
impacts are avoided.

 

Fig. 3.9 8

The Rockwell Automation pump control function for soft starters continuously controls the flow of the medium during start-up and 
stopping and prevents hydraulic impacts with their adverse consequences.

3.9.7 Motor braking
For applications in which the natural coasting to a halt of the motor takes too long – for example with drives with large inertial 
masses – the braking function of soft starters can be useful. By appropriate control of thyristors, a braking torque is generated in the 
motor that results in accelerated braking. The coming to rest of the motor is detected by measurements of the back e.m.f. so that no 
additional devices such as standstill-sensors, contactors etc. are required. This method is not suitable for EMERGENCY STOP shutdowns.

 

Fig. 3.9 9

The shutdown time of a drive can be reduced with the braking function
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3.9.8 Positioning speed and controlled braking
Precise positioning is frequently required in engineering applications, for which the motor speed is temporarily reduced. Soft starters 
provide various options for accurate positioning, in one or two senses of rotation and in combination with controlled braking.  
See Fig. 3.9 10 to Fig. 3.9 12.

 

Fig. 3.9 10

Soft starters with crawl speed in both directions for positioning purposes

 

Fig. 3.9 11

Soft starters with positioning speed in one direction and controlled braking

 

Fig. 3.9 12

The Accu-Stop™ function enables precise (accurate) positioning in one direction and precise stopping. In the braking phase, the motor is 
in a first phase broken until the positioning speed is reached. Complete braking happens as soon as a stop command is issued.
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3.9.9 Linear acceleration and deceleration by speed feedback
Feedback of the motor speed can be used for linear acceleration and stoppage of a drive. The motor voltage is adjusted – largely 
independently of the torque requirement of the drive – in accordance with the speed feedback so that starting and braking follow  
the selected character-istic. The resulting motor current is a function of the required voltage.

 

Fig. 3.9 13

Linear acceleration and deceleration of a drive by speed feedback via tachometer.

3.9.10 Direct start with full voltage
Just as with solid state (semiconductor) contactors, a start with full voltage and hence with full motor torque can be performed  
with soft starters.

 

Fig. 3.9 14

Direct start with soft starters. The motor voltage is raised in a short period to the supply voltage.

3.10 Frequency converters 
The main area of application of frequency converters with asynchronous motors is operational speed adjustment and control. In 
the lower power range of up to a few kW, they are certainly also to be considered for motor starts as an alternative to soft starters, 
for reasons of cost and functionality. Frequently – for example with pump and fan drives – frequency converters are applied for the 
optimum control of acceleration and deceleration of the drive as well as for the operational speed control, for example for energy 
saving purposes.

For motor starts, frequency converters offer the advantage that in the speed range up to synchronous speed the full motor torque is 
available. See also Section 1.7.1.4. In addition the speed characteristic – usually a linear ramp – can be specified and set and is not 
a given like with soft starters where it is in a certain range a result of the motor voltage and the load characteristic (inertial mass and 
resistive torque).

3.10.1 Principle of operation
The basic mode of operation of frequency converters is explored below. With respect to further information – for example relating 
to frequency converters with vector control and slip compensation, inverters with control of the magnetic flux – refer to relevant 
publications of Rockwell Automation (see also Allen-Bradley Homepage www.ab.com).

The frequency converter transfers the constant voltage and frequency of the power supply first into a direct voltage. With this 
direct voltage it generates a new 3-phase supply for the 3-phase motor with variable voltage and variable frequency. The frequency 
converter draws almost only effective power (cos φ ~ 1) from the power supply if equipped with an uncontrolled rectifier. The reactive 
power required for the motor operation is supplied by the direct voltage intermediate circuit. Thus in most cases a supply-side power 
factor compensation device is not required. 

Fig. 3.10 1 shows the schematic diagram.
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Fig. 3.10 1

Functional diagram of a frequency converter consisting of rectifier, DC intermediate circuit and inverter

3.10.1.1 Rectifier
The rectifier is connecting to the external supply and generates a direct voltage with ripple, whose amplitude (with an uncontrolled 
rectifier) corresponds to the peak value of the connected supply voltage (Ue ∙ √2). For drives with low power ratings (up to approx.  
2.2 kW), single-phase bridge rectifiers are used for cost reasons, for larger power ratings three-phase rectifiers.

3.10.1.2 Intermediate circuit
The intermediate circuit stores and smoothes the direct voltage. The motor connected to the frequency converter obtains energy from 
it and thereby partially discharges the capacitor . This is recharged when the supply voltage is higher than the intermediate circuit 
voltage. The energy is thus derived from the supply, when the supply voltage is close to the maximum. This produces current peaks 
that should be taken into account in the selection of switchgear connected upstream (contactors or circuit breakers), as the ratings of 
these devices relate to sinusoidal currents. At larger power ratings (from approx. 5.5 kW), intermediate circuit chokes L are provided to 
extend the current flow time on the supply side and hence to reduce the current peaks.

3.10.1.3 Inverter
The inverter again generates a three-phase supply with the desired frequency and voltage for the connected motor. For this purpose 
the components of the inverter – controlled by the control-logic – connect positive and negative voltage pulses to the motor coil. Due 
to the high switching frequency, which may be many times above the audible range, a largely sinusoidal motor current is created in 
interaction with the inductances of the motor. The control of the frequency and voltage in most frequency converters is based on the 
principle of pulse width modulation PWM (Fig. 3.10 2). 

  

Fig. 3.10 2

Principle of pulse width modulation
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3.10.2 Operational performance 
Squirrel-cage induction motors require as their basic operating characteristic a so-called U/f-characteristic curve, which reduces the 
motor voltage in proportion to the frequency 

(Fig. 3.10 3). This is because the magnetic field in the motor is critical for the development of torque and therefore saturation of the 
iron core must be avoided. Such saturation would occur if at reduced frequency the magnitude of the voltage were not also reduced 
(constant voltage/time-area of a half cycle). In the area up to synchronous speed the drive can thus produce the rated torque  
(Fig. 1.7 8 Section 1.7.1.4).

Frequency converters are usually designed so that the motor voltage reaches its maximum value at the synchronous speed and 
remains constant with higher frequencies. At speeds above the synchronous speed, the available torque thus falls and the drive can be 
operated at constant power.

 Fig. 3.10 3

U/f characteristic curve 

At small frequencies (< approx. 5 Hz) the voltage drop across the internal ohmic resistances of the motor (independent of frequency) 
relative to that across the motor inductances (proportional to the frequency) is growing. This results in insufficient magnetisation and 
as a consequence in a fall in torque. In order to counter this effect, a voltage boost is provided at low speeds (Fig. 3.10 4).

 

Fig. 3.10 4

Voltage boost at low frequencies to prevent a drop in torque
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3.10.3   Change of sense of rotation and braking
As the rotating field in a frequency converter is generated electronically, changing the direction of rotation can be performed by 
means of a control command.

If the frequency is reduced when the motor is running, then the rotor turns faster than the rotating field. The motor runs in the  
so-called over-synchronous mode and acts as a generator. Energy is thus fed back from the motor to the frequency converter, where  
it is in turn stored in the intermediate circuit. This results in a voltage rise and as a consequence possibly in a protective shutdown,  
if the electrical energy is not removed in an appropriate manner, e.g. by means of: 

 - Electronically controlled dissipation of the energy via a resistance

 - Feedback of the energy into the power supply by means of an inverter

 - Connection of the intermediate circuits of several frequency converters and exploiting the braking energy for the   
  operation of the total of connected motors.

3.10.4   Motor protection
Frequency converters usually have integrated electronic motor protection. No additional protection is normally required.

For special applications, for example for supplying several motors via one inverter, additional motor protection for each motor is 
required. If overload protective devices with bimetal tripping mechanisms are deployed for the protection of the individual motors, 
it must be remembered that the harmonic content of the output current from the frequency converters may possibly change the 
characteristic of the protective devices and the devices will also be subject to additional thermal loading.  
See Section 2.4.3.5.

It should also be noted that self-ventilating motors are not suitable for continuous operation at low speeds. For such applications, 
external ventilation should be provided. In order to assure motor protection even at low speeds, temperature sensors, for example 
thermistors (PTC), must be inserted in the motor windings. 
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4    Protection
The protection of persons, domestic animals and property from dangers that result from the operation of electrical equipment is 
defined as principal elements of the safety objectives of the Directive 2006/95/EC of the European Union (Low-voltage Directive). 
The demand for safe operation and the avoidance of hazards and damage of all kinds is a prevailing requirement in low-voltage 
engineering, whether in avoiding electric shocks, dangerous overheating or the effects of electric arcs. This applies both for normal 
operation and in the presence of faults.

Besides the question of avoiding hazards and damage, a significant aspect of protection is to ensure the availability of electrical 
equipment and hence it should be seen as a productivity-ensuring measure. Each malfunction-preventing measure contributes to the 
safety and availability of an item of plant.

In a narrow sense protection of low-voltage devices in main circuits means

 -  protection of the components of the circuit themselves and 

 -  protection of the load

The protection embraces

 -  protection against overload and excess temperatures and

 -  protection against the consequences of a short-circuit or limitation of such consequences by early and timely    
  shutdown, but also

 - recognition of impending malfunctions before a protective shutdown actually occurs, such as for example overloading   
  of a drive, asymmetrical supply or lack of flow of the medium in submersible pump motors.

While protection primarily aims at the prevention of damage, this is also always connected with the question of utilisation of the 
equipment. Protective shutdowns before they are actually necessary, while they may be compatible with the safety objectives, 
represent a disruption to operations and can prevent full exploitation of production equipment. In this way, protective measures 
always have an economic significance and increased expenditure for high quality protection can be justified from this point of view.

4.1  Protection requirements
The key protection requirements for low-voltage installations are

	 •	 protection	against	electric	shock

	 •	 protection	against	overload	/	excess	temperature

	 •	 protection	against	the	consequences	of	short-circuits	and	ground	faults

The following discussion relates specifically to the protective functions of low-voltage switchgear in accordance with IEC 60947.

4.1.1  Protection against electric shock
Protection against electric shock is achieved by a multi-level approach:

	 •	 Protection	against	direct	contact

	 •	 Protection	against	indirect	contact

	 •	 Complementary	protection

4.1.1.1 Protection against direct contact
Protection against direct contact with live components is achieved in electrical installations by encapsulation. IEC 60439-1 stipulates at 
least protection type IP2X or IPXXB for switchgear assemblies. Switchgear assemblies to which unskilled persons have access must in 
accordance with IEC 60439-3 have a degree of protection of at least IP2XC. National regulations must always be respected.

For switchgear itself, in some countries there are regulations with respect to the accessibility of live components. This has resulted in a 
de facto standard for the devices that largely fulfill the requirements of protection type IPXXB (finger safe). This considerably reduces 
the risk of an electric shock by direct contact even when work is being carried out in switchgear assemblies. For devices with larger 
rated currents, often protective covers are required for complying with IPXXB.
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4.1.1.2 Protection against indirect contact
Protection against indirect contact ensures that even in the event of failures – for example in case of a conductive connection 
between a pole conductor and a metallic component – no dangerous touch voltages (≥ 50 V A.C. or ≥ 120 V D.C.) can arise or that 
such voltages in are disconnected in a very short time before a risk of personal injury can result. Usually such protection is achieved by 
grounding measures and short-circuit protection equipment such as fuses, miniature circuit breakers or circuit breakers, as the fault 
currents in such cases can be very large.

Protective Extra Low Voltage (PELV) and Safety Extra Low Voltage (SELV) are also suitable means of protecting from indirect (and direct) 
contact. They are frequently used in electronic circuits. See also Section 2.3.11.

If the lines are long between the short-circuit protection device and the location of fault, the fault current can fall below the response 
level of the short-circuit detecting device (for example of a circuit breaker for motor protection) due to the damping effect of the 
line. For fix installed loads (for example motors) the requirement is that the contact voltage on the motor-case – if ≥50 V A.C. or ≥120 
V D.C. – must be switched off within 5 seconds. To test compliance with these conditions at the stage of engineering, the current in 
the event of fault has to be calculated taking into account all loop impedances (incl. for example the internal resistance of the bimetal 
tripping mechanism of any motor protective circuit breakers). The prospective tripping time should be checked based on the overload 
characteristic of the protective device (Fig. 4.1 1). The manufacturer of protective devices offer advice on applications in such cases.

 

Fig. 4.1 1

When the cables to the load are long, impedances in the circuit can, in the event of a short-circuit in the load, cause the fault current to 
fall below the tripping level of the short-circuit detector. It must then be ensured that the thermal release mechanism clears the fault 
within 5 seconds.

4.1.1.3 Complementary protection
The complementary protection effectively provides a third safety net with respect to the protection against electric shock and offers 
protection from direct and indirect contact.

Residual current protection equipment with response levels ≤ 30 mA shut down touch currents before they reach a dangerous level 
for persons.

Voltage equalising measures reduce the voltage of accessible parts in the event of a fault.
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4.1.2 Protection against overload and excess temperature
Components can be thermally overloaded if they are subjected to operational overcurrents for extended periods. This can be due to 
unexpected overloading or because the rated load capacity of electrical equipment, such as the rating of motors or lines, is too low. 
Overload currents do not lead to immediate danger or immediate outage. However they heat the electrical equipment above the 
rated temperatures for continuous duty and reduce the life span of its insulation. 

The higher the overload current is, the faster the permissible limit temperature will be reached, and the shorter is the permissible 
loading time (Fig. 4.1 2 a). The limiting loading curve is obtained by entering the times of permissible loading in a current-time 
diagram (Fig. 4.1 2 b).

The task of the overload protective device is to allow operationally occurring overcurrents but to switch them off timely before the 
permissible loading time is exceeded.

    

 

a)  Heating at loading with rated    b) Limiting loading curve 
 current (1.0 ⋅ In) and at various  
 overcurrent levels  
 (1.2 ⋅, 1.5 ⋅, 1.7 ⋅, 2 ⋅ In)

TGR Rated limit temperature t time 
T   temperature  tzul permissible loading time

Fig. 4.1 2

Temperature rise characteristic of a body at various loading levels and limit loading, when its limit temperature is not exceeded

4.1.2.1 Different loading curves of various kinds of electrical equipment
Various kinds of electrical equipment such as conductors in comparison to motors or electrical equipment of the same kind  
with different rated powers have different limit loading curves due to their differing masses. Thus a conductor with a small  
cross-section reaches its limit temperature much quicker than a large motor with compact windings that are imbedded in the iron 
core.

These differences are also important for the performance at changing load, when heating phases are followed by cooling phases and 
the final temperature of one phase represents the initial temperature of the next phase. Deviations in the replication of the thermal 
performance of the protected object by the protective device can thus add up and lead to premature tripping or failing of the 
protection (Fig. 4.1 3).
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Fig. 4.1 3

At intermittent operation of self-ventilating motors the simulated temperature rise of a thermal relay lags behind the actual motor 
heating as the rate of cooling of a stationary motor slows down.

δ Temperature

1 Heating characteristic of motor and thermal relay 

2 Cooling characteristic of the motor

3 Cooling characteristic of the thermal relay 

4 Windings temperature in the motor

5 Windings temperature as simulated by the thermal relay

This variety in protective requirements has given rise in practice of technical feasibility and cost effectiveness to a classification of 
protection characteristics and protective devices that has proved itself in a large number of applications and over many decades. This 
standardisation is laid down in the relevant standards and offers practical and economic solutions without claiming to be tailor-made 
for every individual case.

This results in the fact that different protective devices are assigned to different application areas. Thus fuses are suitable for the 
thermal (and short-circuit protection) of lines but not for the thermal protection of motors.

4.1.2.2 Protection in continuous duty and at transient loads
The primary protection requirement with respect to overload/excess temperature is the prevention of long-term overloads and excess 
temperatures that result in accelerated ageing and in consequence to premature degradation of the insulation. 

 

Fig. 4.1 4

Reduction of the average life span of motor windings at over temperatures

Current-measuring protective devices such as thermal (bimetal) or electronic motor protective devices comply with this requirement 
by calibration of the tripping current for continuous duty (ultimate tripping current). The tripping current level can be matched to the 
object to protect (motor) by setting on a scale. Correspondingly, for the protection of lines, there are for example fuses or miniature 
circuit breakers with defined rated currents that are adapted to the available conductor cross sections.

 



4

  4-101

Fig. 4.1 5

Tripping tolerances for temperature-compensated overload relays for motor protection under 

IEC 60947-4-1

I Overload as a multiple of the set current 

δ Ambient temperature

 Limit values under IEC 60947-4-1

Current setting

Usually, the motor protection relay should be adjusted to the rated current of the motor, for star-delta starters to 0.58 · In, as the 
measurement is made in series to the motor windings.

If the coolant temperature is over 40 °C, then the power of the motor should be reduced and the current setting on the motor 
protection relay should be adjusted accordingly. If the motor manufacturer does not specify otherwise, the values of Tab. 4.1 1  
can be used for correction.

Tab. 4.1 1

Typical values for the correction factor for the current setting (k1 ∙ In) on motor protection relays in relation to the coolant temperature 
of the motor

At altitudes of installation over 1000 m above sea level the permissible motor loading is reduced and hence also the setting of the 
motor protection relay has to be adjusted accordingly. If the motor manufacturer does not specify otherwise, the values of Tab. 4.1 2 
can be used for correction. If other coolant temperatures occur and at the same time the motor is operated at high altitudes then the 
product of both factors should be taken into account when choosing the current setting on the motor protection relay.

Tab. 4.1 2

Typical values for the correction factors for the current setting (k2 ∙ In) for motor protection relays in relation to the operating  
altitude of the motor

Transient performance

The simulation of the thermal characteristic of the protected object at transient load conditions by current-measuring protective 
devices is always an approximation and dependent on the complexity of the protected object with respect to heating and cooling. 
Thus for example a bimetal relay is much simpler in design than a motor and even complex electronic protective devices only roughly 
approximate the characteristic of the protected object. Allowance is made for this fact by precautionary making the protective device 
react more quickly as would be required with respect to the extent of risk to the protected object. This means playing safe and “over 
protecting” the protected object with the result that its actual load capacity cannot be used in full. In most cases this is anyhow not 
necessary.

An example is motor start-ups. They are usually so short that normal protective relays of class 10 or 10 A (Tab. 4.1 3) can be used, 
although motors in most cases allow for longer starting times without problems.

I

1,3

1,2

1,05
1,1

1,0

-5 0 20 40
[˚C]

Coolant temperature °C 30 35 40 45 50 55 60

Correction factor (k1) 1.08 1.04 1 0.95 0.9 0.85 0.8

Installation altitude above sea level [m] ≤ 1000 1500 2000 2500 3000 3500

Correction factor (k2) 1 0.97 0.94 0.90 0.86 0.82
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Thermal memory of electronic protective relays

Thermal protective relays, such as for example bimetal relays, have a thermal memory that approximately simulates the cooling of 
motor windings. As bimetal relays do not require any voltage supply, the thermal memory is assured even in the event of a voltage 
outage. This means that for example after a short voltage outage (with the associated motor shutdown), the bimetal strips are still 
warm and the next time that the motor starts it is protected against thermal overload.

Electronic protective relays require a power supply to function. This can be obtained via current transformers from the measuring 
circuit or via a power supply unit that is for example connected to the control voltage supply. Electronic protective relays can be 
designed so that they have a thermal memory or that they immediately are reset to “cold” when the motor to be protected is switched 
off. Relays without thermal memory must be declared as such by the manufacturer (marking on the device). For relays with a thermal 
memory IEC 60947-4-1 requires a test and stipulates in this regard the following minimum requirements:

	 •	 Preheating	with	Ie

	 •	 Disconnection	of	the	current	during	2	·	Tp (double time of trip class; for example 20 s for class 10)

	 •	 Loading	with	7.2	·	Ie

	 •	 The	relays	must	trip	within	50	%	of	Tp (for example 5 s for class 10)

Motor protection with heavy-duty starting

While the starting current of a motor (IA ≈ 4 ... 8 In) is determined by its design, the starting time tA depends on the load (inertial mass 
and resistive torque). In accordance with Fig. 4.1 6 reference is made to heavy-duty starting, if the starting time – depending on the 
starting current – is several seconds. Normal thermal motor protection relays are in such cases usually over-loaded and will trip during 
start-up.

 

Fig. 4.1 6

Heavy-duty starts are classified as starting times above the limit curve (typical values)

 t = starting time

 IA = starting current (≈ 4 ... 8 In)

 N = normal starting conditions

 S = heavy-duty starting

IEC 60947-4-1 provides various trip classes (Tab. 4.1 3) for motor protection relays in order to adapt the protective devices to the 
starting conditions. The limiting values with tighter tolerances “E” have been introduced for electronic protective relays. Under 
heavy-duty starting conditions, electronic motor protective devices can be advantageously used since they can be adjusted to the 
specific starting conditions (see Section 4.2.4.2). Solutions with thermal motor protection relays and saturation current transformers, 
bypassing of the protective relays during starting or use of a separate protective relay for the starting are thus obsolete.

It should be noted that with heavy-duty starting, it may be necessary to increase the cross-section of wiring of the starter components 
and of the motor. Thus IEC 60947-4-1 stipulates in the test conditions for protective relays of Classes 10, 20, 30 and 40 and for 
protective relays, for which a maximum tripping time > 40 s is specified, that the tests - among other things - must be performed with 
conductor cross sections suitable for 125 % of the current setting on the relays.

S

N

 IA
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Tab. 4.1 3

Trip classes of overload relays in accordance with IEC 60947-4-1 am 2. The trip class number stands for the longest permissible tripping 
time at 7.2 · Ie from a cold state.

Copyright © IEC, Geneva, Switzerland, www.iec.ch

Motor protection in hazardous areas

Motor protective devices for the protection of motors of the protection type “Increased Safety” EEx e must comply with the standards 
and regulations like discussed in Section 2.4.7. The motor protective devices themselves are not explosion-protected and may 
therefore not be installed in the hazardous zones.

4.1.2.3 Overload and overtemperature protection by measurement of current and measurement of temperature
The obvious way to identify excess temperatures is by directly measuring them. Thus all factors are included that influence the 
temperature at the measuring location – e.g. the ambient temperature that frequently varies within a wide range and that is often not 
taken into account by current-measuring protective devices or obstructed cooling. When measuring the current, a simulation of the 
temperature rise is carried out and a worst-case scenario is created with respect to the ambient temperature conditions. It is thereby 
assumed that the ambient temperature of the protected object corresponds to the maximum permissible temperature. This reference 
temperature is defined for motors in accordance with IEC 60034 to 40 °C at site altitudes of up to 1000 m. 

Temperature sensors (for example PTC) are frequently being used for measuring the temperature of motor windings and have proven 
its worth in practice. The effect of measurement delays at very rapid temperature rises (for example with a locked rotor condition) is 
only adverse for thermally especially critical motors (for example submersible pump motors) or large machines in which the rotor is 
the thermally critical component (Fig. 4.1 7). However temperature measurement is not always appropriate, possible or at least it can 
be very expensive. In rotor-critical motors for example, the measurement from the rotor to the stator is very costly. Line conductor 
protection via temperature measurement is hardly practical for various reasons.

 

Trip class

Tripping time at 7.2 · Ie

(normal tolerance)
s

Tripping time at 7.2 · Ie

(tighter tolerances „E”)
s

2 - Tp ≤ 2

3 - 2 < Tp ≤ 3

5 - 3 < Tp ≤ 5

10A 2 < Tp ≤ 10 -

10 4 < Tp ≤ 10 5 < Tp ≤ 10

20 6 < Tp ≤ 20 10 < Tp ≤ 20

30 9 < Tp ≤ 30 20 < Tp ≤ 30

40 - 30 < Tp ≤ 40
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Fig. 4.1 7

Thermal delay of a PTC sensor integrated in the stator coil with rapid temperature rises (for example with a locked rotor)

Δδ = Temperature difference above the coolant temperature of 40 °C

ΔδW-S = Temperature difference winding – sensor

 t = Time in s

The measurement of the load current by the protective device has proven reliable and economic in the majority of normal 
applications, even if the full exploitation of the actual load capacity of the electrical equipment is often not possible. Current 
measurement offers specifically for the protection of motors the option for functions that cannot be measured via the temperature 
as the current contains important information about the operating status of the motor and its exposition to potential damage. 
Temperature measurement by means of sensors integrated in the windings is usually used as a complementary method.

4.1.2.4 Protective functions
Due to their differing modes of operation, various types of protective devices offer a variety of functions and properties.  
Tab. 4.1 4 provides a summary of the most important protective functions and their availability by technology, specifically 
considering motor protection.
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Tab. 4.1 4

Summary of functions of protective relays with focus on motor protection

X available (possibly as option)

(X) limited or restricted availability

--- unavailable

1) Disconnection via circuit breaker

Current-measuring Temperature-measuring

Function Bimetal Electronic PTC sensor Linear sensor

Protection against 
overload and 
overtemperature in 
continuous duty

X X X X

Protection against 
overload and 
overtemperature under 
special (e.g. obstructed) 
cooling conditions

--- --- X X

Protection against 
overload / overtem-
perature during 
starting

X 
incl. rotor-critical 

machines

X 
incl. rotor-critical 

machines

X 
excluding rotor-critical 
and thermally very fast-

reacting machines

X 
excluding rotor-critical 
and thermally very fast-

reacting machines

Protection at 
intermittent service

(X) 
depending on the 
operating cycles

(X) 
relays with switching-
over to cooling time 

constants

X 
excluding rotor-critical 
and thermally very fast-

reacting machines

X 
excluding rotor-critical 
and thermally very fast-

reacting machines

Stalling protection (X) 
via thermal protection

X 
undelayed

(X)
via thermal protection

(X) 
via thermal protection

Starting-time 
monitoring

(X) 
via thermal protection

X (X) 
via temperature

(X) 
via temperature

Underload prot. --- X --- ---

Ground fault prot. 1) --- X --- ---

Short-circuit prot. 1) --- X --- ---

Phase-loss protection X 
accelerated

X 
short delay

X 
via temperature

X 
via temperature

Asymmetry protection --- X (X) via temperature (X) via temperature

Temperature-rise 
display

--- X --- X

Warning before 
tripping

--- X (X) 
with 2. set of sensors

X

Display time to trip --- X --- ---

Start interlocking --- X (X) with additional set 
of sensors

X

Current monitoring --- X --- ---

Protection of  EExe 
motors

X X X X

Control switching-over 
Y-D

--- X --- ---

Communication --- X --- X

Settings Current All parameters --- Response 
temperature(s) 
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The listed functions are discussed in more detail below.

4.1.2.4.1 Protection during starting, monitoring of starting time, start interlocking
In addition to protection in continuous duty, protection during motor starting is a central requirement because of the high starting 
currents. Protective response of the protection device before the motor danger zone is reached is advantageous as long as normal 
starting is not prevented. In the case of disturbances (for example locked rotor) the motor would not be loaded up to its thermal 
limit and the waiting time for cooling down after removal of the cause of the fault is reduced. Temperature-measuring protective 
equipment does not switch off until the trip temperature is reached, while current-measuring protective devices may trip earlier 
depending on their trip characteristic (with electronic relays often adjustable).

Electronic relays offer the option to monitor the starting time. The thermal protection can in this case be set to the danger limit of 
the motor, while the starting time monitoring warns or switches off, if the motor current has not fallen to the operating level in the 
expected time.

With prolonged start-ups in which the thermal capacity of the motor can be largely exploited, it may be desirable to not allow starting 
until the necessary thermal reserve is available. Such a start interlocking can be implemented with electronic relays that have an 
output that displays the simulated heating of the motor, or with temperature sensors. Analogue sensors (for example 

Pt 100) offer the possibility of setting the desired temperature threshold; in sensors with a fixed threshold of response (for example 
PTC) a second sensor unit is required with the desired response temperature.

 

 

Fig. 4.1 8

Unsuccessful starts can be avoided if the motor start is not enabled unless the motor has an adequate temperature-rise reserve.

 1 Trip temperature

 2 Temperature rise during starting

 3 If the windings temperature is too high, the start is not enabled as it would lead to tripping  

 4 Temperature threshold, under which starts are enabled

 6 Temperature at the end of a starting that just did not lead to tripping

4.1.2.4.2 Asymmetry protection
When asynchronous motors are supplied with an asymmetrical voltage – with the extreme case of loss of a phase – a thermal 
risk results because of the differing windings currents that are caused by the negative sequence system of the supply voltage. An 
asymmetric supply voltage contains such a negative sequence system, that turns in the opposite direction to the normal symmetrical 
supply, the positive sequence system, and hence has a frequency of around 100 Hz relative to the rotor of a running motor. These 
voltage components create in the rotor – and hence also in the stator – a comparatively large current, similar to the conditions during 
motor start-up, when the 50Hz/60Hz supply voltage with the rotor at standstill generates the high starting current. The current 
distribution in the rotor due to the high frequency results in heavily increased losses that can in the long term thermally endanger the 
motor even at relatively small voltage asymmetries. In accordance with IEC 60034-1 the rated data of motors are based on a max. 1 % 
voltage asymmetry. With larger asymmetries the motor loading should be reduced (Fig. 4.1 9).
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Fig. 4.1 9

Power reduction as a consequence of voltage asymmetry

fR  Reduction factor for motor power

ΔU  Voltage asymmetry [%] 

4.1.2.4.3 Phase failure protection
Star-connected motors 

Small to medium-sized (stator-critical) motors in star configuration are in generally not endangered by phase-loss. In accordance with 
Fig. 4.1 10, the currents in the motor windings both in normal operation and with loss of one phase are the same as the currents in 
the external conductors. The protective device also measures the current flowing through the windings in the event of the failure. In 
both windings through which the current flows, because of the increasing current at constant mechanical motor load, an increased 
power dissipation results. With the third – de-energised – winding a temperature compensation occurs, so that a current-measuring 
protective device would release in time in event of an overcurrent.

 

Fig. 4.1 10

Motor in star configuration under normal supply conditions and with phase failure

Motors in delta configuration 

In the delta configuration and in normal operation, the windings currents IP are smaller than the currents Ie  in the external conductors 
by a factor 1/√3 = 0.58. If a phase is lost (Fig. 4.1 11) the current increases in one winding by around 15 % – assuming the current in 
the external conductors remains constant (Ie 1 = Ie ). In the two other windings that are now connected in series, the current falls to 
a 1/√3 times smaller value. In comparison to symmetrical operation, the protective relay measures a current that is too low for the 
winding that lies between the healthy phases, which can cause a thermal overload in this winding without the protective device 
responding. Heat exchange between this and the other windings that carry less current reduces the danger of a thermal overload in 
small motors up to around 10 kW.

In a real application, the mechanical load of the motor remains constant with the outage of one phase. As the electrical power is only 
provided from two pole conductors, the current in the two external conductors (Ie 1) and the phase currents (IP1, IP2) in comparison to 
the case described above is a factor larger. This factor depends on the load of the motor. The relationships are as represented in  
Fig. 4.1 12.
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 Fig. 4.1 11

Current distribution in delta-connected motors in normal operation and with loss of one phase

 

Fig. 4.1 12

Phase loss of a delta-connected motor. Current flow with symmetrical supply and with phase loss as a function of the load

IEC 60947-4-1 defines the requirements on the performance of motor protective devices in the event of a phase loss (Tab. 4.1 5).  
For high quality motor protection temperature-compensated devices with phase failure protection are standard.

 

Tab. 4.1 5

Tripping threshold values of three-pole overload relays with phase-loss protection in accordance with IEC 60947-4-1 am 2

Column A  No tripping within 2 hours (from cold state).    
Column B   tripping within 2 hours subsequently to the test according Column A

Copyright © IEC, Geneva, Switzerland, www.iec.ch

Type of overload relay Multiples of current setting Reference ambient 
air temperatureA B

Thermal, compensated for ambient air 
temperature variations or electronic
Not phase loss sensitive

3 poles
1.0

2 poles 1.32
1 pole 0 +20 °C

Thermal, not compensated for ambient 
air temperature variations
Not phase loss sensitive

3 poles
1.0

2 poles 1.25
1 pole 0 +40 °C

Thermal, compensated for ambient air 
temperature variations or electronic
Phase loss sensitive

2 poles 1.0
1 pole 0.9

2 poles 1.15
1 pole 0 +20 °C
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Protective shutdown with the outage of a supplying phase is desirable to prevent damage to the motor and because continuation of 
normal operation is in any case impossible. A motor start with phase-loss is not possible, because three-phase induction motors do 
not develop any torque with phase loss at standstill. 

Phase failure protection is largely standard with current-measuring protective relays. Tripping is usually accelerated (bimetal relay 
with sensitivity to phase failure) or briefly delayed (electronic relays). Complex electronic protective relays are often equipped with a 
sensitive asymmetry protection that takes into consideration the risk to the motor from the negative sequence system.

Protective equipment with sensors in the windings protects against overheating of the windings due to phase-loss and also to 
asymmetry. As they measure the temperature in the stator windings, they are not able to detect a specific risk to the rotor. They do not 
respond until the threshold temperature is reached.

4.1.2.4.4 Stalling protection
In applications, in which drives are stalling from normal operation or can be heavily overloaded (for example stone crushers, calenders), 
it may be required that the application immediately shuts down or issues a warning signal when a high load occurs before the thermal 
protection is acting. This is to protect the mechanical transmission elements or to early rectify the fault and prevent long waiting times 
after a thermal protective shutdown.

Electronic relays measure the motor current and often offer a stalling protection function with an adjustable threshold with respect to 
the current and trip delay. In order to make motor start-up possible, stalling protection is not activated until after start-up.

 

Fig. 4.1 13

Stalling protection recognises high overloads and enables rapid intervention or protective shutdown

4.1.2.4.5 Underload protection
Motors that are cooled by the conveyed medium itself (for example submersible pumps, fans), can become overheated as a result 
of underloading when the volume of the medium is absent or reduced (obstructed filters, closed slides). These machines are often 
installed in inaccessible places. The consequences are long repair time and correspondingly high costs. 

When the current intake falls below a certain level, also a mechanical fault in the system may be indicated (torn conveyor belts, 
damaged fan rotors, defective clutches, broken shafts or worn down tools). Such conditions do not endanger the motor, but result in 
production outages. 

The underload protection monitors the current intake of the motor and by rapid recognition of an underload, helps to keep any 
disruptions and damages as small as possible.

4.1.2.4.6 Automatic switching-over during start-up
Monitoring the current consumption of a motor for falling below a defined threshold can also be used for automatic control of 
switching-over of star-delta starters or auto transformer-starters. The relay recognises by the magnitude of the current, when the first 
phase of the starting process has ended and immediately initiates switching-over to the second phase. Thus start-ups can be kept to 
an optimally short length – even under changing starting conditions.

0
100

250

I/Ie

t

Trip threshold high 
overload / stalling 

Operation
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4.1.2.4.7   Ground fault protection
Damage to the insulation of motors is frequently caused by high voltage spikes. The sources may be switching transients from  
the supply network, capacitor discharging, power electronics devices or lightning strikes. Other causes are ageing and continuous  
or cyclical overload as well as mechanical vibrations and foreign particles. In most cases, insulation damage results in shorting against 
the grounded parts of the machine. In grounded supply systems, the ground currents can quickly reach very high values.

The prompt detection and protective shutdown of a ground fault limits the extent of the resulting damage and helps to reduce 
outages and repair costs.

A relatively simple ground fault protection method measures the zero sequence current component of the current  
transformer-secondary currents (“Holmgreen”-circuit, Fig. 4.1 14). Because of the tolerances of current transformers and of  
the influence the 3rd harmonic a sensitivity of 10 % can be achieved at best, typically around 30 %. This method is thus also  
limited to application in solid grounded networks.

 

Fig. 4.1 14

In the Holmgreen circuit, the current Io is measured in the common return conductor of the current transformers. Because of the 
inaccuracy of the c.t.’s, the sensitivity is low.

Higher sensitivities can be achieved with core balanced current transformers (principle of the residual current protection devices,  
Fig. 4.1 15).

 

Fig. 4.1 15

In core balanced current transformers the iron core encloses all conductors leading to the motor like in a residual current protection 
switch. High ground fault sensitivities can thus be achieved.

The shutdown of ground faults should be by means of a circuit breaker, as ground currents frequently exceed the switching capacity 
of contactors. When normally shutting down via the contactor, exceeding of its switching capacity must be prevented (inhibit). In this 
case, the upstream short-circuit protection device takes over the job of clearing the fault.

Fig. 4.1-15
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4.1.2.5 Display, warning and control functions
In addition to the protective functions electronic motor protection relays provide valuable information for monitoring and optimum 
operation of drive installations. The below functions are possible:

	 •	 Display	of	motor	current	flowing

	 •	 Display	of	overloads

	 •	 Display	of	the	temperature	status	of	the	motor

	 •	 Prewarning	before	protective	tripping

	 •	 Display	of	time	to	protective	tripping	(at	constant	load)	

	 •	 Control	of	the	drive	load	(for	example	stone	crushers,	calenders)	for	optimum	motor	temperature	and	hence	 
  maximum production

	 •	 Display	of	the	required	cooling	time	before	the	next	start-up

	 •	 Switching	of	star	to	delta	as	soon	as	the	starting	current	falls

	 •	 Closing	the	bypass	of	pumps	or	fans	immediately	after	starting

	 •	 etc.

 

Fig. 4.1 16

Prewarning enables a disturbance to be rectified before a protective shutdown is required

The possibilities are manyfold and extend the function of the protective device to an integrated component for an optimum process 
control. Integration in the communication network of the control systems supports integration and the minimisation of costs.

4.1.3 Protection against high overcurrents, short-circuit protection
See also Section 2.3.4.

4.1.3.1 Definition and characteristic of a short-circuit
In accordance with IEC 60947-1, a short-circuit is a conductive path between two or more conductive parts forcing the electric 
potential differences between these conductive parts to be equal to or close to zero. In this section, a short-circuit is understood as 
a connection with very low impedance between a pole conductor and a second pole conductor, the neutral or the protective earth 
conductor or ground bypassing the load impedance and leading to the development of a very high overcurrent (> overload current 
of the circuit).

The characteristic and magnitude of the short-circuit current in a circuit are determined by the impedances of the components  
in the circuit. These are:

	 •	 Impedance	of	the	power	supply	(transformer,	connecting	lines)

	 •	 Impedances	of	connecting	points,	any	components	(for	example	fuses,	disconnect	switches,	circuit	breakers)	 
  and lines in the circuit 

	 •	 Impedance	of	the	location	of	fault	(frequently	electric	arc)

I/Ie

t

t

Release temperature

Warning temperature
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The magnitude of the prospective short-circuit current (symmetrical component) is a function of the driving voltage and the 
impedances of the short-circuit loop. For the purpose of estimation it is useful to determine the short-circuit current of the supplying 
transformer and the damping of the short-circuit current by the lines up to the fault location. For the short-circuit current of the 
transformer with a short-circuit directly at the terminals the following applies approximately:

IccT2 = I2e · 1/uk = (PT/(U2e · √3)) · 1/uk

IccT2 Prospective short-circuit current on secondary (r.m.s. value)

I2e Rated secondary current

uk Short-circuit voltage

PT Rated power of the transformer

U2e Rated secondary voltage (pole-pole)

For an estimate of the damping effect of lines on the short-circuit current see RALVET [13].

If large motors are running on a supply, then their contribution to the entire short-circuit current should be taken into account. 
 Their locked-rotor current can approximately serve for this.

Because of the lack of a load impedance in the short-circuit loop, short-circuit currents are strongly inductive. This has an effect on the 
peak value of the prospective short-circuit current, as depending on the time of occurrence of a short-circuit within a supply half cycle, 
a more or less high overshoot (prospective peak short-circuit current) is produced (Fig. 4.1 17). 

 

Fig. 4.1 17

Depending on the time of occurrence of a short-circuit and because of the high inductance of the short-circuit loop, an overshoot and a 
high initial current peak are produced.

1 Symmetrical short-circuit current (as an example 50 kAeff)

2 Characteristic of the current when switching on at voltage – zero crossover (most adverse point in time)

u Driving voltage

This overshoot is taken into account in the regulations by the factor n that should be taken into account when designing switchgear 
assemblies with respect to the short-circuit withstand capacity of the installation and of short-circuit switchgear with respect to its 
making capacity. The factor n is depending on the power of the power supply system and therefore on the prospective short-circuit 
current (Tab. 4.1 6).
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Tab. 4.1 6

Standard values for the factor n in accordance with IEC 60439-1 for determining the electrodynamic short-circuit withstand capacity of 
switchgear assemblies. The r.m.s. value of the prospective short-circuit current should be multiplied by the factor n in order to determine 
the peak value of the prospective short-circuit current.

4.1.3.2 Effects of and dangers in case of short-circuits
The high currents during short-circuits stress the components in the shorted circuit by high dynamic forces and strong heat 
generation in the current-carrying parts.

The forces developed are proportional to the square of the current flowing. Therefore the peak value of the short-circuit current is 
highly significant. The heat generation, too, is proportional to the square of the current.

Usually an electric arc is developing at the location of the short-circuit that can result in serious injuries to persons through burns, 
blinding or electric shock as well as it can lead to the damage or destruction of installation components.

4.1.3.3 Protection requirements

4.1.3.3.1 Switching capacity
The most important requirement for a short-circuit-protective device is sufficient switching capacity so that it is able to  
reliably manage the fault current. The project engineers and users have to ensure that the switching capacity Icu or Icc of the short-
circuit protective devices or device combinations (for example circuit breaker plus contactor) at the given operating voltage is equal 
to or larger than the prospective short-circuit current occurring at the site of installation. The reference quantity for rating is thereby 
the symmetrical value. While with fuses it is naturally a question of the breaking capacity only, circuit breakers must also have a 
corresponding making capacity, as they also may make a circuit in which a short-circuit is present. This is ensured by means of test 
sequences.

With circuit breakers a distinction is made between the ultimate short-circuit switching capacity and the service short-circuit switching 
capacity that relates to reusability after a short-circuit. See Section 4.2.2.3.3.

4.1.3.3.2 Current limitation
Due to the potential dangers of short-circuits it is desirable that they are quickly detected and to break them already in the first phase 
of current rise as far as possible (Fig. 4.1 18). This is intended to reduce the destructive energy to a minimum and to keep the extent 
of damage low. The smaller the damage due to a short-circuit, the lower will be the repair costs, the operational interruption and the 
resulting production losses. Modern circuit breakers and fuses have strongly current limiting properties.

IEC 60439 (low-voltage switchgear assemblies) takes these factors into account by dispensing from the requirement of verification of 
the short-circuit withstand capacity, if the symmetrical short-circuit current is ≤ 10 kA or the cut-off current ID ≤ 17 kA.

 

r.m.s. value of the 
prospective 

short-circuit current
[kA]

 
Power
factor
cos φ

 
 
 

Factor n

I ≥ 5 0.7 1.5

 5 < I ≥ 10 0.5 1.7

10 < I ≥ 20 0.3 2.0

20 < I ≥ 50 0.25 2.1

50 < I 0.2 2.2
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Fig. 4.1 18

Current limiting circuit breakers or fuses reduce the fault current and hence the mechanical and thermal stresses in  
the event of a fault

ID Cut-off current

tk Total breaking time

4.1.3.3.3   Selectivity
From the point of view of the operational safety and reliability of an entire low-voltage installation, it is usually desirable to specifically 
isolate the part of a system affected by a short-circuit in order to prevent spreading of the fault. Selectivity is intended to ensure that 
the protective shutdown is as close as possible to the location of the fault so that unaffected installation components can continue 
to operate normally. This is often also desired for safety reasons and in IEC 60439-1 (low-voltage switchgear assemblies) addressed for 
installations that require a high level of continuity in current supply.

In buildings and industrial plants, radial distribution networks are the norm. In radial distribution systems there are several protective 
devices in series, usually with decreasing rated currents from the supply end to the load end. While the operational currents decrease 
from the supply end to the load end, in the event of a short-circuit the same fault current will flow through all the protective devices 
connected in series. By a cascading of the trip characteristics it must be ensured that only the respective protective device that is 
closest to the location of the fault is activated and hence the fault is selectively limited to the smallest possible part of the installation.

The basic prerequisite for selectivity of protective devices connected in series is that the trip characteristic of the downstream (closer 
to the load) protective device is faster than that of the upstream device. And all this taking into account all tolerances and over the 
entire current range up to largest prospective short-circuit current.

Special attention should be paid to the area of high overcurrents, where the effects of current limitation and breaking times are 
significant. Thus an upstream fuse does not operate if the entire I2t of the downstream protective device (fuse, circuit breaker) is 
smaller than the melting I2t the fuse. An upstream circuit breaker on the other hand does not operate if the maximum cut-off current 
ID of the downstream protective device is smaller than the activation value of its magnetic release.

In individual cases, reference to manufacture documents and frequently the technical support of the manufacturer is required  
for the correct selection of devices. The basic facts are presented below.

Selectivity between fuses connected in series

Fuses connected in series act selectively if their time current-characteristic curves have sufficient mutual spacing and their tolerance 
bands do not touch (Fig. 4.1 19).
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Fig. 4.1 19

Selectivity between fuses connected in series

At high short-circuit currents the melting I2∙t value of the upstream fuse must be larger than the breaking I2∙t value (melting  
and clearing time) of the smaller downstream fuse. This is usually the case if their rated currents differ by a factor of 1.6 or more.

Selectivity of circuit breakers connected in series

Current selectivity

In distribution networks, the rated currents of the switches decrease constantly from the transformer to the load. As the  
short-circuit releases normally operate at a multiple of the rated current, their release levels decrease in the same way with  
distance from the supply. As the prospective short-circuit currents also become smaller with increasing distance from the  
supply point due to line damping, a so-called natural selectivity can be created via the current magnitude. This means that  
the maximum short-circuit current with a short-circuit on the load-side of the switch 2 (Fig. 4.1 20) is below the trip value of  
the magnetic release of switch 1. The short-circuit currents must be known at the installation sites of the switches.

Selectivity is usually not assured with short-circuit currents above the response value of the magnetic release of the upstream  
circuit breaker. 

 
Fig. 4.1 20

Current selectivity of two circuit breakers in series is given, if the prospective short-circuit current downstream of  
Circuit breaker 2 is smaller than the trip value of the magnetic release of Switch 1

b = Overload release 
s = Short-circuit release

 Current i (r.m.s.)
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When assessing the current selectivity the tolerance of the short-circuit trigger (+/-20 % in accordance with IEC 60947-2) should be 
taken into account.

Time selectivity

If current selectivity between circuit breakers is not possible, selectivity must be achieved by cascading of the trip times, i.e. the 
upstream circuit breaker operates with a short delay to give the downstream circuit breaker time to clear the short-circuit. If the short-
circuit occurs between the two switches, then it will continue during the short trip delay time of the switch 1 and after lapse of this 
time it will be switched off by the latter (Fig. 4.1 21).

 

Fig. 4.1 21

Time selectivity of two circuit breakers in series

b = Overload release 
s = Short-circuit release (switch 1 with short-time delay; utilisation category B)     

The cascading of trip times requires that Switch 1 is capable of carrying the short-circuit current during the trip delay time. This is the 
case when using circuit breakers of utilisation category B. The critical variable is the rated short-time current Icw that determines the 
magnitude of the permissible short-time current during a defined period. It is usually stated as the 1s-current and can be converted for 
other times with I2t = const. (see also Section 2.3.4.3).

Selectivity between fuse and downstream circuit breaker

  

Fig. 4.1 22

Selectivity between fuse and downstream circuit breaker

1 = Circuit breaker 
2 = Fuse

Tripping delay

Current 1 ( effective value)
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In the overload range selectivity is given, if the trip characteristic of the overload release lies under the characteristic curve of  
the fuse (considering the tolerance band). In the short-circuit range selectivity is given to the extent that the total breaking time  
(incl. clearing time) of the circuit breaker is below the melting characteristic of the fuse.

Selectivity between a circuit breaker and downstream fuse

 

Fig. 4.1 23

Selectivity between circuit breaker and downstream fuse

1 = Circuit breaker 
2 = Fuse

Selectivity in the tripping range of the short-circuit release of the circuit breaker is given when the cut-off current of the fuse is smaller 
than its trip value.

Selectivity and undervoltage

In a short-circuit the supply voltage breaks down at the short-circuit location. The size of the residual voltage depends on the 
impedance of the fault. If an electric arc is produced, the voltage is appr. 30 V to 70 V.

As the short-circuit current flows over the entire power line up to power source, along this line there is a voltage drop whose size is 
determined by the impedances lying between the two points. All connected electrical consumers are affected by the voltage drop 
and the closer they are to the fault location the greater is this effect. Devices such as contactors or undervoltage releases of circuit 
breakers may trip depending on the amount and duration of the voltage drop.

In order to guarantee operational continuity, suitable off-delays or remaking equipment should be provided. When short-circuits are 
broken by current limiting circuit breakers, voltage break-downs are so short that no disruptions should be expected.

4.1.3.3.4 Short-circuit coordination
Short-circuit coordination determines the extent of damage and consequences with respect to the operational interruption as a 
consequence of a short-circuit for motor starters and load feeders.

See Section 2.3.4.5.2.

4.2 Protective devices
4.2.1 Fuses
Fuses as the oldest protective devices in electrical engineering still have a wide area of application, although circuit breakers are 
continually gaining currency in plant construction and are supplanting fuses.

4.2.1.1 Principle of operation
Protection by fuses is based on letting a piece of electrical conductor melt or fuse, providing so to speak an intentional weak point in 
a circuit. To this end, a certain current-generated temperature is required. Full-range fuses have a soldered joint that is the intended 
weak point and bottleneck of the conductor for small overcurrents and a constricted area of the conductor that is broken by high 
overcurrents (short-circuit currents) by the Joulean heat impulse I2t. Part-range fuses are exclusively designed for short-circuit 
protection.
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4.2.1.1.1 Current limitation
Cut-off current (let-through current) 

Fuses trip at very high currents so quickly that the circuit is broken before the short-circuit current can reach its prospective peak value. 
The highest instantaneous value of the current that is attained during the circuit breaking process is known as the cut-off (let-through) 
current ID. The current limitation is specified by means of cut-off current diagrams (Fig. 4.2 1). These state the peak value of the 
current that may flow through the fuse as a function of the prospective short-circuit current.

  

Fig. 4.2 1

Cut-off current diagram for fuses

In1, In2, In3 = rated currents of fuses 
ID = max. cut-off current

Let-through - I2t value

The II2t value (correct ∫ i2·dt) represents the heat energy that the fuse lets through and that stresses the circuit up to the location of the 
fault. The better the current limitation, the more the fault current is reduced and the smaller is the destructive effect of a short-circuit. 
The faster the short-circuit is cleared, the smaller is the I2·t value.

Distinction is made between the melting I2·t, which occurs up to melting of the fuse-conductor, and the total I2·t value which 
represents the total energy until quenching of the electric arc of the fuse. The two values only start to diverge significantly with large 
short-circuit currents or when the total breaking times are shorter than a half-cycle. The I2·t–values of the fuses are critical for the 
mutual selectivity of fuses at high currents.

4.2.1.1.2 Breaking capacity
The effective current limitation and the associated very high breaking capacity are specific properties of fuses that assure their 
continued use in certain applications in short-circuit protection.

4.2.1.2 Standards and utilisation categories
So that fuses can be adapted to the respective requirements, a variety of models with various current-time characteristic  
curves have been developed. The parameters and tests are defined in various standards. The applicable standards for  
low-voltage fuses are 

IEC 60269 – 1 (General requirements)

IEC 60269 – 2 (Fuses intended for use by authorized persons)

IEC 60269 – 3 (Fuses intended for use by unskilled persons)

IEC 60269 – 4 (Fuses intended for the protection of semiconductor devices).
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4.2.1.2.1  Classification and time/current zones
The area of application is designated by two letters, the first of which specifies the breaking current range and the second the 
utilisation category. A summary of the classification of low-voltage fuses is provided by Tab. 4.2 1.

Tab. 4.2 1

Classification of low-voltage fuses according to breaking current range and utilisation category 
IEC 60269-1 ed. 4.0. Copyright © IEC, Geneva, Switzerland. www.iec.ch.

The letter “g” indicates full-range fuses that can continuously conduct currents at least up to their rated current In and that can 
break currents from the smallest melting current up to the rated breaking current. These include for example “gG” fuses for general 
applications (cable, conductor and device protection).

The letter “a” signifies partial range fuses that can continuously conduct currents at least up to their rated current In and that can break 
currents above of a certain multiple of their rated current up to the rated breaking current. This functional class includes for example 
the “aM” fuses for protection of motor circuits, whose breaking range begins at over four times the rated current and which hence are 
solely designed for short-circuit protection.

Depending on the application requirements, various time/current zones are specified. In Fig. 4.2 2 the principal characteristics of 
time/current zones for the utilisation categories “g” and “a” are presented. The area of the overload curve of fuses of Class “aM” must  
be protected by an overload protective device. The release curve of the protective device must be below the overload curve of  
the “aM” fuse.

 

Fig. 4.2 2

Principal characteristics of the time/current zones of fuses

 
Breaking range 

Continuous load 
up to

Utilisation 
category

 
Characteristic,  Protection of

“g“ 1) In “gG“ „gL“ Conductors, Cables, Devices

“gM“ Switchgear in motor circuits

“gR“,“ gS“ 3) Semiconductors

“gD“ Fuses with time-delay

“gN“ Fuses without time-delay

“a“ 2) In “aM“ Switchgear in motor circuits

“aR“ Semiconductors
1) Full-range fuses, 2) Partial range fuses, 3) Type “R” is faster than Type “S”
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Usually the manufacturers of fuses state these characteristic curves as mean values of a tolerance band. 

Selectivity

The time/current ranges are coordinated for “gG”/“gL” fuses so that fuses whose rated currents are in the ratio 1:1.6 are usually mutually 
selective. See also Section 4.1.3.3.3 on selectivity.

4.2.1.3 Designs
The design of fuses has developed over time. A distinction is made between designs that are mainly intended for use by unskilled 
persons (for example screw-type fuses) and those that are intended for operation by authorised persons (for example fuses with blade 
contacts).

Screw-type fuses (for example D System)

The D System is characterised by the non-interchangeability of fuse-links with respect to the rated current and by their touch 
protection. They are suitable for industrial applications as well as for domestic installation and can be operated by unskilled persons. 
Screw-type fuses are not suitable for switching operational currents (i.e. they must be screwed in and out without load current 
flowing).

Fuses with blade contacts (for example the HRC System)

The HRC system (low-voltage/high rupturing capacity fuse system) is a standardised fuse system, that consists of a fuse base, a 
replaceable fuse-link and an operator element for replacing the fuse-link. HRC fuses can also be equipped with a trip-indicator and 
tripping devices.

Non-interchangeability with respect to the rated current and touch protection are not provided; the HRC system is therefore not 
suitable for operation by unskilled persons.

Although fuse bases are equipped with phase partition walls and side walls, they are not touch-safe for fuse replacement. This should 
therefore only be performed with special protective equipment. The design sizes of the system have to be indicated with their 
maximum current ratings. Within a current range specified by the design size, the use of any fuse rated current is possible.

Fuse-switch-disconnectors 

Safe changing of fuse-links of the HRC system can be achieved by the use of fuse-switch-disconnectors. The fuse-links are snapped 
into a cover that covers the entire base and are pulled out of the contacts with this cover for replacement. This means that the circuit 
can be made and broken under load.

A further development of the above is the “switch-disconnector-fuse” combination. To make the replacement of fuse-links even safer, 
they are first isolated from the voltage on both sides. This means that neither return voltages nor the direction of power supply have to 
be taken into account by the user. For reasons of space economy, in most cases busbar designs are used.

4.2.2 Circuit breakers

4.2.2.1 Principle of operation and design
The circuit breaker is a mechanical switching device, capable of making, carrying and breaking currents under normal circuit 
conditions and also making, carrying for a specified time and breaking currents under specified abnormal conditions such as those of 
short-circuit (IEC 60947-1).

Circuit breakers have the capacity to break short-circuits. They are classified according to their breaking capacity, their design and their 
capability to limit short-circuit currents. They are classified according to the following groups: 

	 •	 Circuit breakers that clear at current zero 

	 •	 Current-limiting circuit breakers

The devices of both groups can be further subdivided according to design: 

	 •	 Miniature Circuit Breakers (MCB)

  Single pole or modular multipole circuit breakers for up to around 100 A rated current for line protection with or without   
 residual current release for installation applications

	 •	 Moulded Case Circuit Breakers (MCCB)

  Circuit breakers with a housing of insulating material that forms an integral part of the circuit breaker (rated currents   
  typically up to around 1600 A)

	 •	 Air Circuit Breakers (ACB)

  Large installation switches with open design (rated currents typically 300 … > 3000 A)
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4.2.2.2 Standards, functions and utilisation categories

4.2.2.2.1 Standards
The standards that are applicable for circuit breakers are

	 •	 IEC	60947	–	1	(Low-voltage	Switchgear,	General	Requirements)	and

	 •	 IEC	60947	–	2	(Circuit	Breakers).	

For use in North America, the standards and approvals under UL 489 or CSA 22.2 apply. Devices that are not approved under these 
standards are not recognized or approved as circuit breakers in North America.

For circuit breakers with motor protection function IEC 60947-4-1 also applies. Such circuit breakers can be used in North America 
under UL 508 under certain conditions (construction type E). For details with respect to applications in North America, see  
UL-WP001A-EN-P [15].

4.2.2.2.2   Functions and utilisation categories
A circuit breaker basically consists of an actuation device (manual or – optionally – remote controlled), usually an (thermal or 
electronic) overcurrent release, an electromagnetic short-circuit release, a tripping mechanism with spring storage (switch latch), the 
main contact system and optional auxiliary contacts. The combination of these functions in one unit means that installations can be 
made compact and that circuit breakers can be integrated in the automation environment. Thus modern starter combinations consist 
of only two components – a circuit breaker with motor protection characteristic and a contactor.

Circuit breakers offer functions such as:

	 •	 Short-circuit	protection

	 •	 Line,	load	(motor),	plant	protection

	 •	 Signaling	of	the	operational	state

	 •	 Signaling	of	tripping

	 •	 Operational	switching

	 •	 Remote	control

	 •	 Disconnection

	 •	 Locking	functions	by	means	of	a	padlock

Depending on design, they can be used not only as short-circuit protection devices but also as motor protection circuit breakers, load 
switches, main switches or disconnectors.

With respect to selectivity between short-circuit protective equipment, IEC 60947-2 distinguishes between two utilisation categories 
(Copyright © IEC, Geneva, Switzerland, www.iec.ch).

 - Utilisation category A → Circuit breakers without tripping delay

IEC-Definition: Circuit-breakers not specifically intended for selectivity under short-circuit conditions with respect to other  
short-circuit protective devices in series on the load side, i.e. without an intentional short-time delay provided for selectivity under 
short-circuit conditions, and therefore without a short-time withstand current rating according to 4.3.5.4. 1) 

 - Utilisation category B → Circuit breakers with short-time delay

IEC-Definition: Circuit-breakers specifically intended for selectivity under short-circuit conditions with respect to other short-circuit 
protective devices in series on the load side, i.e. with an intentional short-time delay (which may be adjustable), provided for selectivity 
under short-circuit conditions. Such circuit breakers have a short-time withstand rating according to 4.3.5.4. 1)

  1) Rated short-time withstand current (ICW): At A.C. this is the r.m.s. value of the A.C.-component of the prospective short-circuit 
current during the time of short-time delay.

The large majority of circuit breakers is used at the load-end of circuits and corresponds to utilisation category A.

Circuit breakers with motor protection characteristic also comply with the utilisation categories for switching loads, for example  
AC 3 under IEC 60947-4-1.
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4.2.2.3 Design of a circuit breaker
The parts of the circuit breaker detailed in Fig. 4.2 3 are precisely coordinated so that the common tasks, the rapid disconnection of 
short-circuit currents and the dependable recognition of overloads, can be performed optimally.

 

Fig. 4.2 3

The main functional elements of a circuit breaker for motor protection

 a) Thermal overcurrent release 
 b) Electromagnetic overcurrent release 
 c) Main contact system 
 d) Auxiliary switch position 
 e) Switch latch  
 f ) Arcing chamber (de-ion plates) 
 g) Plunger armature 
 h) Differential trip slide

In larger circuit breakers (> approx. 100 A), electronic trip and communication modules are increasingly being used. These offer  
a high degree of flexibility with respect to the selection of application-specific parameters and support the integration of devices in 
super ordinated control and management systems.

4.2.2.3.1 Thermal overcurrent releases
The thermal overcurrent releases of circuit breakers act in the same way as those of thermal motor protection relays (bimetal overload 
relays) and are subject to the same standards if they are used for motor protection. See also Section 4.2.4.1. Tripping is normally 
effected via the switch latch of the circuit breakers and results in the opening of the main contacts. Resetting is by manual or remote 
actuation of the switch after the bimetals have cooled below the reset threshold.

In the case of circuit breakers with thermally delayed overload releases and low setting currents (ca. < 20 A), the resistance of  
the circuit with the heating windings of the bimetal strips and the coil of the undelayed electromagnetic short-circuit triggers  
is comparatively large. It may be so large that it damps any size of (prospective) short-circuit current to a value that the switch can still 
cope with thermally and dynamically and can hence also disconnect. Such circuit breakers are intrinsically safe against short-circuits.

4.2.2.3.2 Electromagnetic overcurrent releases
In circuit breakers with motor protection characteristic overcurrents from a value of 10 ... 16 times the upper scale setting immediately 
cause the electromagnetic overcurrent release to act. High efficiency motors may require higher magnetic trip levels (see 1.7.1.2.1). 
The precise tripping value is either adjustable (matching for selectivity or various making current peaks in case of transformer and 
generator protection) or is determined by the design. In circuit breakers for plant and line protection the tripping zone is lower.
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In small circuit breakers (usually < 100 A), the pole conductor is shaped in the form of a small coil. If a high overcurrent flows through 
these coils, a force acts on the armature enclosed by the coil. This armature unlocks the loaded switch latch that releases the stored 
spring energy and hence opens the main contacts and disconnects the overcurrent.

Plunger for high current-limiting circuit breakers

Current-limiting circuit breakers limit the fault current and hence reduce the mechanical and thermal stress in the event of a  
fault (see Section 4.1.3.3.2). Circuit breakers with rated currents up to around 100 A are offered for the rapid disconnection of  
the short-circuit current with a plunger system, that in the event of a short-circuit additionally forces the main contacts open  
and hence supports extremely short break times (Fig. 4.2 4). 

An alternative to the plunger system at larger rated currents is the slot motor that opens the contacts very fast, largely by  
means of electrodynamic forces.

The faster it breaks, the less energy has to be managed in the switch and the more compact the circuit breaker can be.  
This means that this is prerequisite for circuit breakers to be built with compact external dimensions. 

 

Fig. 4.2 4

The contacts of a high current-limiting circuit breaker are forced open in the event of a short-circuit by a plunger and the current is 
directed immediately to the arcing chambers. The circuit is such broken even while the current is still rising.

4.2.2.3.3 Main contact system and switching capacity
The requirements on a circuit breaker main contact are a high making capacity, high breaking capacity, low heat dissipation at 
operational current, low contact erosion, small inertia and optimum shape for a favourable movement of the electric arc. The switching 
arc should quickly be directed out from the area between the contact surfaces, cooled, divided, extended and thus extinguished.  
The de-ion plates must form a functional unit with the main contact with respect to shape and arrangement.

In order to optimally full-fill these high requirements, the very highest demands are placed on the design and materials and not least 
on the simulation and testing techniques.

Contact systems are designed to produce optimum switching performance at the main rated voltage. The number of de-ion plates is 
critical for the electric arc voltage during circuit breaking and hence for the switching capacity and current limitation.  
For example a contact system designed for 400 V has a reduced switching capacity at supply voltages above 400 V (supply voltages 
below 400 V are thereby uncritical). Use at for example 690 V may therefore only be possible with reduced switching capacity.  
The performance data for the specified operational voltage should be respected.

Circuit breakers must be capable to control the largest possible short-circuit current at the point of installation at the given  
operational voltage. Intrinsically short-circuit proof circuit breakers (Section 4.2.2.4.1) can be used in supplies of any magnitude of 
short-circuit current, as their internal impedance limits the short-circuit current to the switching capacity of the switch (or below). 
If the switching capacity of the circuit breaker is smaller than required, then a backup protection must be provided (fuse or circuit 
breaker connected in series). The required switching capacity must be ensured in conjunction with the backup protection device.  
The sizing of the backup protection can be obtained from the product documentation.
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Ultimate switching capacity and service switching capacity

IEC 60947-2 makes distinction between the rated ultimate short-circuit breaking capacity ICU and the rated service short-circuit 
breaking capacity ICS:

 - Rated ultimate short-circuit breaking capacity ICU

  The test sequence is O-t-CO

  Circuit breakers that have operated at the level of the ultimate short-circuit breaking capacity are only limited    
 serviceable afterward. There may be changes in the overload tripping characteristic and increased temperature rises as   
 a consequence of erosion of contact material. 

 - Rated service short-circuit breaking capacity ICS

  The test sequence is O-t-CO-t-CO

  Circuit breakers that have operated at the level of the service short-circuit breaking capacity are further serviceable   
  afterward.

 O breaking the short-circuit from the closed state

 t time interval

 CO switching onto the short-circuit followed by breaking it

Copyright © IEC, Geneva, Switzerland. www.iec.ch

The ratings of circuit breakers for ICU are usually higher than for ICS. The majority of circuit breakers is therefore (for cost reasons) selected 
according to ICU. In plants in which down-time must be kept as short as possible, product selection should be based  
on ICS.

After a short-circuit has been broken, it is generally recommended to examine the device to make sure it is fully functional.

Let-through values

The essential quality attributes with respect to good short-circuit protection are the let-through values (Fig. 4.2 5). The magnitude of 
the cut-off current and let-through energy in relation to the prospective short-circuit current Icp provide information about the quality 
of current limitation by the switch. They show the extent to which downstream devices such as contactors or switches are stressed in 
the event of a short-circuit. The let-through values directly affect the sizing of these series-connected devices – for example short-
circuit coordination type 2 without over-sized contactors – and determine the constructional design of the installation.

  

Fig. 4.2 5

Max. cut-off current and max. forward (let-through) energy of strongly current limiting circuit breakers at a rated operational  
voltage of 415 V
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Life span of circuit breakers 

IEC 60947-2 defines the number of switching operations that a circuit breaker has to perform without load, at normal load, at overload 
or with a short-circuit. The values vary between two breaks (O-t-CO) for the rated ultimate short-circuit breaking capacity and a couple 
of thousand operations for purely mechanical switching without load.

The electrical life span (contact life span) of a circuit breaker like with contactors depends on the size of the current to be broken. 
Small currents in the order of the rated current or the tripping range of thermally delayed overload releases have a much smaller effect 
on the contact life than short-circuit currents of the magnitude of the breaking capacity. The contacts may be so eroded even after 
exposure to just a few high short-circuit currents that replacement of the circuit breaker is required. The short-circuit currents that arise 
in practice are usually well below the calculated maximum values and the switching capacity of the switches deployed. They therefore 
cause less contact erosion.

Operational switching

In the lower power range, circuit breakers are also used to manually operate smaller – frequently mobile – equipment and devices 
(for example milling machines, circular saws, submersible pumps). The electrical life of the switches is rarely used to the full at the low 
number of operations typical in these applications. The circuit breakers with motor protection characteristic replace the combination 
fuse, motor protective device and load switch.

Auxiliary contacts and displays

Auxiliary contacts enable the functional integration of the protective device in the control system. ON, OFF, overload and/or short-
circuit tripping can be signaled with the aid of the appropriate auxiliary contacts. These auxiliary switches can be mounted on or 
inserted in the circuit breaker and are either connected to terminals or connectable via loose wire ends.

In addition to auxiliary switches, circuit breakers are often equipped with visual indicators of the state of operation and also often for 
the tripped state and the cause of tripping. These are valuable aids for diagnosis on site during commissioning and fault rectification.

Shunt-trip and undervoltage releases

Shunt-trip releases enable remote circuit breaking by means of a control signal, for example for electrical interlocking.

The undervoltage release switches the circuit breaker OFF when the voltage falls below a (usually fix) certain level of the applied 
voltage and is used for example for detecting voltage outages. They are in particular used as safety components, for example to 
prevent automatic restarts after a voltage outage, for interlocking circuits, for EMERGENCY STOP functions and for remote release.

Motor operators

Motor or remote operator units open the possibility to issue all commands to circuit breakers remotely. The functions that are usually 
manually performed can thus be actuated from remote. The load feeders can thus be switched-on and -off without direct intervention 
of an operator on site. Resetting of a circuit breaker that has tripped is thus possible in remote-controlled distribution stations.

4.2.2.4 Application of circuit breakers
Depending on their design and accessories, circuit breakers can perform the following switch-gear functions: 

 - Circuit breaker

 - Motor protection circuit breaker (manual motor starter) 

 - Load switch

 - Disconnector 

 - Main switch 

 - EMERGENCY STOP switch 

The specific properties of the respective design should be taken into account to ensure that the best suitable circuit breakers are 
selected for the respective applications. See also Section 2.2.1.

4.2.2.4.1   Application as circuit breaker
Current-zero quenching circuit breakers

Current-zero quenching circuit breakers have little current limitation and break the short-circuit close to the natural current zero 
crossover. Because of their high let-through values they are mainly used for protecting lines and installations. In versions according to 
utilisation category B (with breaking delay) they are applied in selective power supply systems with time cascading.
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Current-limiting circuit breakers

Current-limiting circuit breakers simplify the applications. They make complex supply-short-circuit current calculations for every single 
location of switch installation unnecessary and make short-circuit coordination nearly as simple as with conventional fuses.

Properties of circuit breakers to simplify planning work:

 - High switching capacity renders supply calculations unnecessary:

  If the switching capacity of the circuit breaker is higher than the short-circuit level at the site of installation  
  (with motor outputs typically 1 ... 20 kA) then there is no need to perform supply calculations.

 - Low let-through values (cut-off current and I2∙t value):

  Weld-free or only slightly welding starter combinations of circuit breakers and contactors are often possible without   
  overrating the contactors and are therefore economical. The manufacturers conduct coordination tests and issue    
  coordination tables in accordance with for example IEC 60947-4-1 coordination type “1” or “2”.

 - The verification of the short-circuit withstand capacity in accordance with IEC 60439-1 (low-voltage switchgear    
  assemblies) is not required with cut-off currents ≤ 17 kA.

Circuit breakers for the protection of motors

These are at least equipped with to the motor current adjustable releases (bimetal or electronic) with motor protection characteristic. 
Modern motor protection-circuit breakers are also featuring: 

 - Ambient temperature compensation (in case of bimetals)

 - Safe single-phasing protection (for example special calibration, differential trip slider or electronic fault detection).  
  This is also the prerequisite for use with motors of the ignition protection type “Increased Safety” (EEx e).

Standard circuit breakers – above all in the range of higher rated currents – normally only offer line protection and hence are not 
suitable for the overload protection of motors. For use in motor circuits, additional suitable motor protective devices should be 
provided. It should thereby be noted that the overload characteristic of the circuit breakers must be slower than those of the motor 
protective devices, so that at overload the motor protective device and not the circuit breaker trips (see IEC 60947-4-1 Annex B.4).

  

   

Fig. 4.2 6

Modern high current-limiting circuit breakers with motor protection characteristic 

Circuit breakers with motor protection characteristic are used as so-called self-protected motor starters (combination motor starter).  
At smaller rated currents the motor protection circuit breakers often serve as manual motor starter and must then be verified under 
IEC 60947-4-1 as motor starters. Modern motor protection circuit breakers have in comparison with the conventional design of motor 
protection switches a high short-circuit switching capacity.
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Circuit breakers for distribution systems and line protection

The requirements on circuit breakers for distribution systems and line protection are different compared to circuit breakers for  
motor protection:

 - The current range is often fixed

 - The thermal triggers are less accurate

 - Usually there is no temperature compensation 

 - The tripping level of the electromagnetic short-circuit release is usually lower and often adjustable

 - Switches of utilisation category B have a (usually adjustable) time delay and a short-term current carrying capacity (Icw)   
 and are thus suitable for time-selective cascading

In circuit breakers with motor protection characteristic, line protection is also automatically assured as the lines are thermally less 
critical than motors. Depending on the respective national standard, the lines may be rated according to the current-setting on the 
circuit breaker or according to the upper end of the current scale. While with fuses of Type “gG” an overrating of the fuse and hence of 
the cross-section of the protected line by one or two current steps is necessary to prevent tripping during motor start-up, motor lines 
protected by circuit breakers can have smaller cross-sections and hence be more fully utilised.

Circuit breakers as load switches

See also Section 2.2.1.2. 

Circuit breakers fulfill the requirements on load switches and can be used as such.

Circuit breakers as disconnectors

See also Section 2.2.1.1. Circuit breakers often fulfill the disconnector requirements and therefore can be used as such. Such circuit 
breakers with disconnector properties must be correspondingly tested and marked with the disconnector symbol.

 

Fig. 4.2 7

Switch symbol for circuit breakers with disconnector function. The horizontal line symbolises the disconnector properties, the cross 
stands for the circuit breaker function.

Circuit breakers as main switches (supply disconnector devices)

See also Section 2.2.1.5.

Under IEC 60204-1, circuit breakers are expressly authorised as main switches insofar as they possess disconnector properties.

Circuit breakers as EMERGENCY STOP switches

See also Section 2.2.1.6.

According to IEC 60204-1, supply disconnect switches are permitted as EMERGENCY STOP devices if they are easily accessible for the 
operating personnel. For use as an EMERGENCY STOP switch the handle must be red on a yellow background.

4.2.2.5 Installation of circuit breakers, safety clearances
See also Section 2.3.9.

Circuit breakers can cope with very high currents at high voltages when breaking short-circuits. During the breaking process, the 
contact systems and arcing chambers consequently convert large amounts of power into heat energy. In addition to high temperature 
rises of components such as contacts, de-ion plates and walls of the contact chambers, the energy converted into an arc results in 
heating of the air in the contact system to several thousand degrees Celsius and hence to the formation of a conductive plasma.  
This plasma is usually emitted through blow-out openings to the outside and must not reach any conductive parts to prevent 
secondary short-circuits.

For this season, safety clearances are specified for circuit breakers (Fig. 4.2 8), within which no conductive parts – for example metallic 
walls or uninsulated conductors – may be located. Frequently additional insulation components (phase partition walls or covers;  
in some cases optional) are used. With some products, additional insulation of the connected conductors is required in accordance 
with manufacturer specifications. Non-compliance with the safety clearances can result in accidents with most severe consequences.
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Fig. 4.2 8

It is essential that the safety clearances are observed. No conductive parts may be located within the hatched zones such as  
metallic walls or uninsulated conductors.

4.2.3 Miniature Circuit Breakers MCB

4.2.3.1 Principle of operation and design
Miniature circuit breakers are primarily designed to protect cables and lines against overload (thermal) and short-circuit 
(electromagnetic). They thus care for protecting this electrical equipment against excessive temperature rises and destruction  
in the event of a short-circuit. Miniature circuit breakers are used in distribution networks in homes and in industrial  
applications. They meet the requirements for different applications by various designs and with the aid of a comprehensive  
range of accessories (for example auxiliary and signal contacts etc.).

The structural shape of all line protection switches is similar. Certain dimensions are defined by the installation standards  
(in some cases national). The major differences lie in the widths (for example 12.5 and 17.5 mm) or depths (for example 68  
and 92.5 mm). The breaking capacity is one of the factors that determine the size.

4.2.3.2 Standards, tripping characteristics and rated switching capacity
MCB’s are subject to international and national norms. The design and test requirements are defined in the standard IEC 60898.  
For the various applications three trip characteristics B, C and D are defined in IEC 60898 (Fig. 4.2 9):

  

Fig. 4.2 9

The tripping characteristics B, C and D under IEC 60898 are distinguished by the trip level of the short-circuit trigger
 - Trip characteristic B is the standard characteristic for wall outlet circuits in domestic and utility build ings (I> ≥3 … 5*Ie)
 - Trip characteristic C is advantageous when using electrical equipment with higher inrush currents  as for example of lamps and  
  motors (I> ≥5 … 10*Ie)
 - Trip characteristic D is adapted to electrical equipment that can produce strong current surges such as transformers,   
  electromagnetic valves or capacitors (I> ≥10 … 20*Ie)
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AC miniature circuit breakers are normally suitable for single- and three-phase supplies up to a rated voltage of 240/415 V and AC-DC 
MCB’s additionally for direct voltage supplies up to rated voltages of 125 V, 220 V or 440 V depending on the number of poles.

In addition to the quality of releasing according to the tripping characteristic, a key feature of MCB’s is their rated switching capacity. 
They are assigned to switching capacity classes, which indicate the maximum size of short-circuit current that can be handled. 
Standard values under IEC 60898 are 1’500, 3’000, 4’500, 6’000, 10’000, 20’000 and 25’000 A.

When selecting a MCB to protect cables and conductors, the permissible let through-I2·t values for conductors must be respected. 
They may not be exceeded during clearing a short-circuit. Therefore the I2·t values in relation to the prospective short-circuit current 
are important characteristic of MCB’s. 

In some countries, miniature circuit breakers are classified according to the permissible I2·t values. According to the “Technical 
Connection Conditions” (TAB) of the German power utilities (EVU) for example only MCB’s with a rated switching capacity of at least 
6’000 A and the energy limitation Class 3 may be used for selectivity reasons in distribution boards of domestic and utility buildings 
behind the meter. For industrial applications a switching capacity of 10’000 A is usually required.

4.2.3.3 Installation of Miniature Circuit Breakers, safety clearances
See also Section 4.2.2.5.

MCB’s as components of installation systems are usually designed so that compliance with safety clearance requirements is assured 
when arranged conform to the system structure.

4.2.4 Motor protection relays (overload relays)
Overload relays are used to protect electrical equipment, such as 3-phase AC motors and transformers, against excessive temperature 
rise and measure the current to determine the temperature-rise and danger to the object to be protected. Protective shutdown is 
performed via the motor switchgear – usually a contactor.

4.2.4.1 Thermal motor protection relays
Principle of operation

Thermal motor protection relays contain three bimetal strips together with a trip mechanism in a housing made of insulating material. 
The bimetal strips are heated by the motor current, causing them to bend and activating the trip mechanism after a certain travel 
which depends on the current-setting of the relay. The release mechanism actuates an auxiliary switch that breaks the coil circuit of 
the motor contactor (Fig. 4.2 10). A switching position indicator signals the condition “tripped”.

 

Fig. 4.2 10

Principle of operation of a three pole thermally delayed bimetal motor protection relay with temperature compensation

A = Indirectly heated bimetal strips

B = Trip slide

C = Trip lever

D = Contact lever

E = Compensation bimetal strip

The bimetal strips may be heated directly or indirectly. In the first case, the current flows directly through the bimetal, in the second 
through an insulated heating winding around the strip. The insulation causes some delay of the heat-flow so that the inertia of 
indirectly heated thermal relays is greater at higher currents than with their directly heated counterparts. Often both principles are 
combined. For motor rated currents over approx. 100 A, the motor current is conducted via current transformers. The thermal overload 
relay is then heated by the secondary current of the current transformer. This means on one hand, that the dissipated power is 
reduced and, on the other, that the short-circuit withstand capacity is increased.
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The tripping current of bimetal relays can be set on a current scale – by displacement of the trip mechanism relative to the bimetal 
strips – so that the protection characteristic can be matched to the protected object in the key area of continuous duty.

The simple, economical design can only approximate the transient thermal characteristic of the motor. For starting with subsequent 
continuous duty, the thermal motor protection relay provides perfect protection for the motor. With frequent start-ups in intermittent 
operation the significantly lower heating time constant of the bimetal strips compared to the motor results in early tripping in which 
the thermal capacity of the motor is not utilised.

The cooling time constant of thermal relays is shorter than that of normal motors. This also contributes to an increasing difference 
between the actual temperature of the motor and that simulated by the thermal relay in intermittent operation (Fig. 4.1 3 Section 
4.1.2.1). For these reasons, the protection of motors in intermittent operation is insufficient.

Temperature compensation

The principle of operation of thermal motor protection relays is based on temperature rise. Therefore the ambient temperature of the 
device affects the tripping specifications. As the installation site and hence the ambient temperature of the motor to be protected 
usually is different from that of the protective device it is an industry standard that the tripping characteristic of a bimetal relay is 
temperature-compensated, i.e. largely independent of its ambient temperature (Fig. 4.1 5). This is achieved with a compensation 
bimetal strip that makes the relative position of the trip mechanism independent of the temperature.

Sensitivity to phase failure

The tripping characteristic of three-pole motor protection relays applies subject to the condition that all three bimetal strips are loaded 
with the same current at the same time. If, when one pole conductor is interrupted, only two bimetal strips are heated then these 
two strips must alone produce the force required to actuate the trip mechanism. This requires a higher current or results in a longer 
tripping time (characteristic curve c in Fig. 4.2 13).

If larger motors (≥ 10 kW) are subjected to these higher currents for a longer time, damage should be expected (see Section 
4.1.2.4.3). In order to also ensure the thermal overload protection of the motor in the cases of supply asymmetry and loss of a phase, 
high quality motor protection relays have mechanisms with phase failure sensitivity (differential release).

 

 

Tripping with three-pole load

 

Tripping with two-pole load, the middle bimetal strip being unheated

 1 = Bimetal strip

 2 = Phase failure slide

 3 = Overload slide

 4 = Differential lever

 5 = Contact lever

 S1 = Tripping movement at overload 

 S2 = Tripping movement with phase failure 

 S3 = Opening the trip contact

Fig. 4.2 11

Principle of operation of the differential release for thermal motor protection relays
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For this purpose, motor protection relays have a double slide arrangement in the form of a phase failure slide and an overload slide. 
In the case of phase failure, the de-energised, cooling-down bimetal strip moves the phase-failure slide in the opposite direction to 
the overload slide. Via a differential lever, this countermovement is converted into an additional tripping displacement (Fig. 4.2 11).

In the event of phase failure, this double slide device causes tripping at a lower current than with a 3-phase load (characteristic  
curve b in Fig. 4.2 13).

Single-phase operation

For protection of single phase AC current- or direct current loads, all poles should be connected in series to ensure the force 
required for tripping the switch mechanism and to prevent tripping by the phase failure protection (Fig. 4.2 12). 

 

Fig. 4.2 12

Series connection of the poles of the motor protection relay for single-phase operation

Trip characteristics

The trip characteristics reflect the dependency of the tripping time on the tripping current as a multiple of the set current (usually 
rated operational current Ie of the motor) (Fig. 4.2 13). They are stated for symmetrical three-pole and for two-pole loads from the 
cold state.

The smallest current that causes tripping is known as the ultimate tripping current. Under IEC 60947-4-1 it must lie within certain 
limits (see Section 4.1.2.2).

A motor at operational temperature has a lower heat reserve as a motor in a cold state. Allowance is made for this by the 
characteristic of the motor protection relays. If the motor protection relays are loaded for a longer period with the set current Ie then 
the tripping times are reduced to around a quarter.

Production, material and calibration tolerances result in tolerances of the tripping times. A tripping tolerance band is therefore 
assigned to each setting range. According to regulations the tripping times must lie in a tolerance of ±20 % of the stated values 
from 3 times to 8 times the set current Ie.
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Fig. 4.2 13

Typical trip characteristics of a motor protection relay

 Ie = Rated current set on the scale 

 t = Tripping time

From a cold state:

 a = 3-pole load, symmetrical

 b = 2-pole load with differential release

 c = 2-pole load without differential release

From the warm state:

 d = 3-pole load, symmetrical

Resetting after tripping

After tripping, motor protection relays require a certain time before the bimetal strips have cooled-down to the resetting point.  
This time is known as the recovery time. The relays cannot be reset until this time has elapsed. 

The recovery time depends on the magnitude of the current that caused tripping and the tripping characteristic of the motor 
protection relay. It is around 30 to 50 s after tripping at twice to 6 x the value of the set current.

Modern motor protection relays have an automatic- and hand-reset function. The desired function can be selected at the relays. In 
hand-reset position, automatic restarting is prevented. Not until the bimetal strips have cooled-down sufficiently can the relays be 
reset by pressing the reset button. The auxiliary contacts then return to their normal position and prepare such for switching-on the 
assigned contactor.

As required by IEC and national standards, the motor protection relays are equipped with a free-trip release, i.e. normal protective 
tripping occurs even when the reset button is pressed. 

In the automatic reset position, the contacts automatically reset the bimetal strips when the latter have cooled down. 

For safety reasons, motor protection relays with automatic reset should only be used in circuits whose contactors are actuated by 
momentary contact control (momentary pushbuttons). With hand reset they may also be used in circuits with maintained contact 
control of the contactors.
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For remote resetting of motor protection relays, reset magnets are available that can be mounted onto the motor protection relays.

Test function and О-button

With the test function, the proper operation of the auxiliary contacts and of the connected control circuit of an overload relay ready 
for service can be tested. This function simulates the tripping of the relay.

With the О-button, the NC contact is opened for as long as the button is pressed. By this means the contactor connected in series 
and hence the motor can be switched off. This function is often used for simple starters in small housings.

Short-circuit withstand capacity

See also Section 2.3.4.5. In accordance with IEC 60947-4-1, motor protection relays must be protected against short-circuit so 
that they are either rendered inoperational by the short-circuit current and have to be replaced (Coordination type 1) or their full 
operational capability is retained (Coordination type 2). The thermal motor protection relays must be protected against damage 
by short-circuit currents by circuit breakers or fuses. The fuse values for the respective coordination-type can be obtained from the 
technical documentation. The short-circuit withstand capacity of directly heated overload relays is higher than that of indirectly 
heated ones.

4.2.4.2 Electronic motor protection relays
Electronic motor protection relays include a wide range of devices for the protection and the optimised operation of motors and 
plants. Due to this variety, it is only possible below to consider a few key aspects that are important in the selection and use of these 
relays. Section 4.1.2.4 shows a selection of functions that are offered by electronic motor protection relays. The range of devices 
extends from simple and economical designs that are intended for use instead of thermal (for example bimetal) motor protection 
relays up to very complex devices with a variety of functions, communication links etc.

4.2.4.2.1 Principle of operation

 

Fig. 4.2 14

Basic functional modules of electronic motor protection relays

Current measurement

For the processing in the electronic circuits, the motor current is measured and converted into an electronically compatible signal. 
Depending on the principle of operation of the electronics, this signal may be analogue (more commonly in simple devices) or 
digital (in complex devices). Current transformers or magnetic field sensors (for example Hall sensors) are most commonly used for 
measurement. As the signals are processed electronically, virtually no control signal power is drawn.  
This results in low heat losses that facilitate control cabinet climate control, which is a major advantage of electronic motor 
protection relays.

Another advantage of electronic signal processing is the wide current ranges of the devices, which leads to a considerable reduction 
in the number of versions in comparison to thermal motor protection relays and which simplifies planning and inventory. In addition 
they usually have a higher precision of the ultimate tripping current thanks to the narrow tolerances of the components used. IEC 
60947-4-1 has made allowance for the technical possibilities of electronic motor protection relays by introducing additional trip 
classes (Tab. 4.1 3).
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Depending on the principle of current measurement, there are restrictions with respect to the permissible frequency range. When 
current transformers are used, frequencies significantly below the supply frequency are not acceptable because of saturation, 
especially applications with direct current are not possible. Applications with variable frequency drives require separate consultation.

The short-circuit withstand capacity of the main circuits is usually very high. Exceptions can be versions with small rated currents, if 
conductors with small cross-sections are used.

Power supply / internal supply

Simple electronic motor protection relays that are intended as substitutes for bimetal thermal relays obtain the supply for the 
electronic circuits directly from the measuring circuit and hence require no supply by a separate control voltage. The simplicity of 
application carries with it a restriction to the basic functions of motor protection – basically to thermal protection and the phase failure 
protection. In case that other protective functions are offered it should be noted that setting up an internal supply can take a certain 
time during which these functions are not available.

Complex electronic motor protection relays require a separate control voltage supply that for example can also be provided via the 
communication link.

Thermal simulation

Thermal simulation, i.e. the simulation of motor heating based on the measured motor current is in simpler relays usually performed 
on the basis of a single-body replica similar to that of a bimetal relay. Complex devices often also use more complex thermal replicas 
that more closely simulate motor heating and for example make allowance for the differing cooling characteristics of running and 
stationary motors. This increases suitability for intermittent operation. Motor protection relays without thermal memory should be 
marked in accordance with IEC 60947-4-1 as such (on the device) (see also Section 4.1.2.2).

Top class devices also often take into account the influence of asymmetrical supply on motor heating (see also Section 4.1.2.4.2).

An important advantage of electronic motor protection relays is the tripping time at high overcurrents (motor starting). Realising 
various trip classes (Tab. 4.1 3) is a simple matter electronically. The wide tolerance band of the individual classes needs not be used 
to the full and the tripping times are usually close to upper class limit. This means that relays are well suited for heavy-duty starting 
applications. In complex relays the trip class (tripping time at 7.2 · Ie) can often be adjusted and can thus be adapted to the motor and 
the application.

The phase failure protection usually results in electronic motor protective devices in briefly delayed (a few seconds) tripping, as the 
loss of a phase can immediately be recognised in the measured signals. The short delay serves to prevent ghost tripping, for example 
due to short interruptions of the power supply.

Additional functions

Section 4.1.2.4 provides an overview of functions that are often offered by electronic motor protection relays. The range of options is 
wide and the documentation for the respective devices is definitive in individual cases.

An advantage of electronic motor protective devices is the availability of various functions in a single device and access to device-
internal signals. Thus for example current-measuring motor protective devices with inputs for temperature sensors are available.

Outputs – for example for the measured motor current – make separate measuring circuits unnecessary and in particular access to 
the “temperature state” of the thermal replica allows the devices to be integrated in the control environment. Thus protective tripping 
can be avoided by the issue of early warnings or – as far as compatible with the processes – the motor loading can be controlled in 
accordance with measured temperature rise. Integration in the communication system turns the motor protective device into an 
integrated control component.

Memory functions may be useful for debugging after protective shutdowns or for maintenance. For example the operating data 
before a protective shutdown can be captured or statistical data on the operation of the drives collected. Such data is frequently 
offered by microprocessor-based devices.

4.2.4.3 Thermistor protection relays
(See also Section 4.1.2.3)
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4.2.4.3.1 Relays for PTC sensors
PTC sensors (Positive Temperature Coefficient) are most frequently used in low-voltage motors for sensing the windings temperatures. 
Their resistance increases steeply (Fig. 4.2 15) at the rated operating temperature TNF which makes it possible to provide simple and 
economical tripping devices. The sensors – normally 1 per phase – are imbedded by the motor manufacturer in the windings and 
are connected in series to terminals. The rated operation temperature TNF is selected in accordance with the insulation class. If early 
warning before tripping is required it is possible to install a second set of temperature sensors with lower operation temperature that 
are connected to a separate tripping device.

In order to ensure the proper functioning of the protection system modern trip devices monitor their measuring loops for short-
circuits and interruption.

Fig. 4.2 15 

Resistance-temperature characteristic of a Type A PTC sensor and threshold values of the tripping devices in accordance with  
IEC 60947-8 ed. 1.1. (TNF = rated operation temperature)

Copyright © IEC, Geneva, Switzerland. www.iec.ch

4.2.4.3.2 Relays for NTC sensors
The characteristics of NTC sensors (Negative Temperature Coefficient) show decreasing resistance with increasing temperature. They 
are used in special cases and require tripping devices with an adjustable response threshold. With one set of sensors, early warning 
and tripping can be realised.

4.2.4.3.3 Metal resistance sensors
These sensors – for example Pt 100, Ni 100, Ni 120, Cu 10 – are especially suitable for medium and high voltage motors. They are used 
for measuring temperatures of windings and other machine parts, such as bearings. Tripping devices have a correspondingly larger 
number of inputs. The operation and warning levels can be adjusted. Frequently important temperature values are also shown on 
displays.
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5 Control circuits
5.1 Utilisation categories
IEC 60947-5-1 defines the requirements for electromechanical devices for control circuits. In the utilisation categories AC-12 to AC-15 
and DC-12 to DC-14 reference applications are defined for switchgear in control circuits that facilitate device selection (Tab. 5.1 1; see 
also Tab. 1.1 1 in Section 1.1).

Tab. 5.1 1

Utilisation categories for control circuits in accordance with IEC 60947-5-1 ed. 3.0 

Copyright © IEC, Geneva, Switzerland. www.iec.ch

The standard also defines the test conditions for the individual utilisation categories so that the ratings are defined and are 
comparable in accordance with the utilisation category. In addition to the utilisation category, the ratings of a contact include the 
rated voltage and the rated current or the rated apparent power. When evaluating devices, this data should be compared with that for 
the load to be switched.

The performance data according to the utilisation category specify the maximum load capacity of the switching components. In 
applications with electronic devices – because of the low level of voltage and current – contact reliability is the main criterion for 
selection, i.e. the reliability with which the low signal levels are switched. See Section 5.3.5.

5.2 Control voltages

5.2.1 Alternating voltage
Both alternating and direct voltage can be used as control voltages. In the case of alternating voltages, IEC 60204-1 (Safety of 
Machinery– Electrical equipment of machines) stipulates that the control voltage must be supplied via transformers with separate 
windings. When several control transformers or a control transformer with several secondary windings are used it is recommended to 
arrange the circuits so that the secondary voltages are in phase. Transformers are not mandatory for machines with only one (1) motor 
starter and/or a maximum of two control devices. The maximum rated voltage is 277 V, common preferred values are 110 V and 230 V. 
Also 24 V is increasingly used.

Among the good reasons for using control transformers is that in the case of a short-circuit in the control circuit the prospective 
short-circuit current is limited by the impedance of the control transformer and hence welding of the control contacts can largely be 
avoided. This is also reflected in the fact that the short-circuit tests for control contacts in accordance with IEC 60947-5-1 are carried 
out at a prospective short-circuit current of 1000 A.

The selection of the control voltage has among other things an influence on the size of the currents flowing. In this regard, special 
attention should be paid to the pick-up currents of large magnetic loads (for example of large contactors). Switching contacts and 
conductor cross sections should be selected and rated correspondingly to comply with loading limits and to keep the voltage drop 
within the permissible limits.

 
Kind of current

 
Category

 
Typical applications

Relevant IEC product 
standard

Alternating current AC 12 
 
AC 13

AC 14

AC 15

Control of resistive loads and solid state loads with 
isolation by optocouplers

Control of solid state loads with transformer isolation

Control of small electromagnetic loads (≤72 VA)

Control of electromagnetic loads (>72 VA)
60947-5-1

Direct current DC 12 

DC 13

DC 14

Control of resistive loads and solid state loads with  
isolation by optocouplers

Control of electromagnets

Control of electromagnetic loads having economy 
resistors in circuit

60947-5-1
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5.2.1.1 Control transformers for contactor controls 
In accordance with IEC 60947-4-1 contactors have a normal control voltage range of 85 % – 110 % the rated control supply voltage, i.e. 
they reliably close and stay closed within these voltage limits. Often contactors are available with an extended control voltage range, 
for example 80 % – 110 % or 115 %. Because of the high pick-up currents of AC magnets – especially when using large contactors and 
when several contactors are switched simultaneously – it should be ensured that the voltage does not fall below the lower limit. This 
could result in contactors not completely closing and the high pick-up current flowing for an extended period. The consequence can 
be burning of the coil and / or welding of the main contacts.

For control transformers supplying electromagnetic loads such as contactors, an important selection criterion is the short-term power 
PS(S6). The drop in secondary voltage in comparison to the rated voltage may be no more than 5 % at this power rating. The peak load 
of the control transformer should be determined in each individual case and the control transformer should be selected considering 
the prospective supply voltage variations. Often the worst case scenario is to assume that the largest contactor must reliably close at a 
certain basic load of the transformer.

5.2.1.2 Frequencies < 50 Hz and > 60 Hz
Normal AC magnets are rated for 50 Hz or 60 Hz. Usually the voltage specifications for both frequencies are provided in the technical 
documentation. Often dual frequency versions are also available, i.e. the devices can be used at the same rated voltage with 50 Hz and 
60 Hz supplies. Dual frequency designs are advantageous for the export industry, thus the same devices can be used in all markets – 
subject to adjustment of the voltage magnitude (tapping of the control transformer). For controls that do not require this flexibility, it is 
recommended to choose contactors for one (1) rated frequency as the tolerance range of the control voltage and the mechanical life 
span are then optimised.

For applications in railway transport systems at 16 2/3 Hz and applications at 400 Hz (airports, military), devices with direct current 
magnets must be used and – in case that a direct current supply is not available – the alternating voltage rectified.

5.2.2 Direct voltage
Direct voltage is used as a control voltage in a large and growing range of applications. Typical applications are installations on vehicles 
(for example refrigeration systems), stationary battery-powered systems (power utility installations) and constantly growing areas of 
electronic controls in industry and building technology.

Preferred direct voltages are 24 V (industry, vehicles), 48 V (vehicles) and 110 V, 220 V … 250 V (power utilities, high-voltage batteries, 
energy regeneration).

Given the wide range of battery voltages on vehicles (overcharging and complete discharge) contactors with an extended voltage 
range are offered (for example 0.7 … 1.25 UN).

Quality of direct voltage

When direct voltage is used as a control voltage, in addition to the tolerance range of the voltage attention should be paid to its 
harmonic content (ripple content). Battery powered systems are in this regard an ideal voltage source without harmonics. Also 
switched power supplies produce well smoothed direct voltages.

If the direct voltage is obtained from alternating voltage by rectification, the harmonic content depending on the circuit may be 
relatively large and must be considered. In these cases it should always be remembered that the arithmetical average voltage is 
the critical quantity for the pull-in performance of conventional electromagnets. Two-way rectification (Graetz rectifier) is usually 
permissible for supplying conventional contactor coils; also 3-phase bridge circuits with a ripple of around 5 %.

 

Fig. 5.2 1

Rectifier circuits for supplying electromagnetic loads

Fig. 5.2-1
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For controlling and supplying contactors with electronic coil control it should be noted that the instantaneous value of the direct 
voltage may not fall below a certain minimum value. This is in regard to the proper functioning of the electronic circuit. The 
specifications of the product in question with respect to the quality of the direct voltage should be observed. Especially with large 
contactors and a small control voltage (for example 24 V), the current consumption of the devices may short-term extend way 
beyond the 10 A range. In such cases it should be ensured that correspondingly powerful supply units are used and that the voltage 
drops on the connections between the supply and contactor are as small as possible (short lines, large cross sections, no loops, good 
quality terminations). Unstabilised supply devices with two-way rectification and smoothing capacitor soon reach their limits in these 
applications.

 

Fig. 5.2 2

Simple Graetz rectifier with capacitive smoothing result at higher load currents to strong discharge between the half-cycles (dashed 
line) that can cause malfunctions in electronically controlled contactors and other electronic devices.

5.3 Switching contactors
5.3.1 Alternating current magnets

5.3.1.1 Conventional alternating current magnets
Alternating current magnetic drives are characterized by a high pull-in current that flows when the magnet system is open and is 
determined by the low coil impedance (large air gap). The utilisation categories AC-14 and AC-15 take this characteristic into account. 
The high pull-in current surge thermally loads the coil and restrict the permissible frequency of operation. Especially at small control 
voltages with large contactors, attention must be paid to voltage drops in the control circuit to ensure reliable switching.

When contactors are switched off, the inductance is large because of the small size of the residual air gap. This results in a 
corresponding arcing of the control contacts and to switching transients. External overvoltage protection measures may be required 
(see Section 5.3.3.1).

5.3.1.2 Electronic coil control
By means of electronic circuits, the operating conditions for contactor magnet systems can be optimised and the operation optimally 
adjusted to user requirements. Thus the magnet system can be isolated from voltage variations so that the current drawn is optimised 
and the pull-in and drop-out values clearly defined. As required by the user, control can be performed conventionally by application of 
a control voltage or by a PLC signal, either directly or via a control input.

 

Fig. 5.3 1

Example of electronic control of a contactor coil with separate control input

US control supply voltage

UC control voltage (PLC)

Fig. 5.3-1
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The advantages of electronically controlled contactor magnet systems:

	 •	 Wide	control	supply	voltage	range

	 •	 Low	current	consumption

	 •	 Clear	pull-in	and	drop-out	voltages

	 •	 Undervoltage	reliability

	 •	 Direct	PLC	control

	 •	 Integrated	overvoltage	protection	circuit

	 •	 EMC	compatible

	 •	 Small	size	(usually	same	as	contactors	with	conventional	drive)

	 •	 Low	noise	development

5.3.2 Direct current drives

5.3.2.1 “Conventional”
With direct current, larger magnet systems with specially shaped poles are required to generate the forces needed for pulling in 
contactors and to optimise the holding energy. This results, on the one hand, in a large depth of devices and, on the other, in switching 
on gentler and in comparatively low current consumption during pulling-in. The pull-in power is the same as the holding power. The 
loading of the control contacts during circuit breaking is relatively high because of the high inductance of the coils and is taken into 
account by utilisation category DC-13.

 

Fig. 5.3 2

Conventional direct current magnet system in the comparison to an alternating current magnet system and a magnet system with 
electronic coil control (same size for alternating and direct current)

5.3.2.2 Double winding coils
Direct current contactors with double winding coils are contactors with alternating current magnets and a pull-in and holding coil. The 
size is the same as that of alternating current contactors. The contactors switch on by means of a pull-in winding with low impedance 
and a correspondingly higher pull-in current. After the magnet circuit is closed, the excitation is switched over by an auxiliary switch 
to the lower holding power. The auxiliary switch can be integrated in the device or – usually with smaller contactors – be externally 
mounted.

5.3.2.3 Electronic coil control
Electronic coil control is also available for contactors with direct current supply. The characteristics and advantages are similar to those 
with alternating current supply. 

(See Section 5.3.1.2.)
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5.3.3 Electromagnetic compatibility and protective circuits
Conventional switchgear without active electronic circuits such as switched power supplies for controlling contactor coils is 
considered from an EMC viewpoint as belonging to a normal control environment. Although these devices can short-term generate 
very high and steep overvoltages, from an EMC perspective no countermeasures are required. The levels of immunity tests for 
industrial applications are set so that other devices usually function reliably at this level of interferences.

Like all other electronic devices, devices with active electronic circuits such as contactors with electronic coil control are subject to 
the relevant immunity and emission tests. For industrial switchgear the levels correspond to the Environment A “Industry” (high 
immunity against interferences, high interference emissions). If devices such as contactors with electronic coil control are used in 
Environment B “Domestic /Commercial/Light industry Installations” (low interference immunity, low emissions), it should be 
ensured that the devices have also been tested for these areas of application. On the other hand, devices for the Environment B are 
not suitable and permitted for use in industrial applications with their higher levels of interference.

In addition to the selection of devices for the given environment, the instructions of the respective device manufacturer with respect 
to the installation and connections (for example shielded cables) must be observed to achieve EMC compatibility of the switchgear 
assembly.

5.3.3.1 Protective circuits in coil circuits
When switching magnetic loads with high inductance such as for example contactor coils, in spite of the above considerations, 
switching transients with magnitudes of several kV and with rise-times in the range of μs to ns can occur that may interfere with 
the proper functioning of other devices. During the opening of the controlling contacts, there occur repeated restrikes (shower 
discharges), as the inductance of the coil maintains the current flow and the opening contact does not instantaneously attain its 
full withstand voltage (Fig. 5.3 3). These shower discharges also increase wear on the switching control contact. With respect to the 
interference effect, it is not only the size of the overvoltage that is generated that is critical but also, in view of the extremely short 
reaction times of electronic circuits, its rise and fall time. Rapid signals couple via stray capacitances with other signal circuits.

 

Fig. 5.3 3

Oscillogram of the voltage characteristic during circuit breaking of a 24 V coil without protection circuit

The best countermeasure is to deal with the interference at the source. To this end suppressor modules are offered for interference-
producing coils, designed as plug-on or wired add-ons or integrated in the contactor. Tab. 5.3 1 provides a summary of the 
alternatives and their most important features. Measures that only limit the amplitude of the overvoltage are also effective with 
respect to dynamic interference (to a limited extent) as they reduce the duration of the shower discharges and limit their amplitude.
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Tab. 5.3 1

Protective circuit measures for contactors 
UC Control voltage 
UV Varistor operation voltage 
UZ Limiting voltage of the Z diode

Fig. 5.3 4

Oscillogram of the voltage characteristic during circuit breaking of a 24 V coil with protection circuits

5.3.4 Effect of long control lines

5.3.4.1 Voltage drop
In accordance with IEC 60947-4-1 and IEC 60947-5-1, the normal control voltage range of power and control contactors lies between 
85 … 110 % of the rated control voltage. Within these limits contactors pull-in perfectly. Frequently contactors are offered with an 
extended control voltage range, thus for example with contactors with electronic coil control. The technical documentation of the 
devices used is definitive.

At small control voltages and with long control lines, the voltage drop across the lines to the contactor (both out-going and return 
conductors should be considered!) can be so big that pulling-in reliably is no longer guaranteed. In addition to burnt coils, another 
consequence of this may be welding of the main contacts. It must therefore be ensured that taking into account

	 •	 Supply	voltage	variations

	 •	 Voltage	drop	at	the	control	transformer	at	peak	load	(see	Section 5.2.1.1) and

	 •	 Voltage	drop	across	the	control	lines	the	minimum	pull-in	voltage	is	always	guaranteed.

Technical solution Suitable for Limitation of Functional features

A.C. D.C. Amplitude Rise-time

RC module X X X X Limitation-effect depends on the 
component sizing

Varistor X X X Amplitude limitation at the 
operation voltage of the varistor. 

Max. voltage rise ÛC+ UV

Diode --- X X To be connected with correct 
polarity. Extended drop-out time.

Max. voltage rise  UC

Bidirectional 

Z-diode

X X Small extension of the drop-out 
time. Max. voltage rise  UC + UZ
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For the voltage drop across the control lines the following applies approximately:

 

 %

or for the maximum line length at a given permissible voltage drop

 

 l Line length (supply and return line) [m]

 lmax maximum line length (feeding and return line) [m]

 uR Percentage voltage drop [%]

 UC Rated control voltage [V]

 S Pickup power of the contactor [VA]

 κ Conductivity of the conductor material [m·Ω-1·mm-1] = 57 for copper

 A Conductor cross section [mm2]

Fig. 5.3 5

Line lengths for a voltage drop of 5 % and copper conductors

l Line length (feeding and return line)

S Apparent power of load 
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5.3.4.2 Effect of the cable capacitance
With AC controls with long control lines, low coil power ratings of the contactors and high control voltage, depending on the 
topography of the circuit, the capacitance of the control line can be in parallel to the controlling contact and practically bypass it 
when it is open. This can mean that when the control contact has opened sufficient current continues to flow via the cable  
capaci-tance causing the contactor not to drop out. An example may be a contactor that is controlled by a distantly located sensor 
(for example limit-switch).

 

Fig. 5.3 6

When the control contact switches off the cable to the contactor, the capacitance of the line causes at most a slight drop-off delay.

 

Fig. 5.3 7

If the long control line to the contactor stays live when the control contact is open, the current via the cable capacitance can prevent 
the contactor from dropping out. With pulse contact control, the capacitance of the lines acts twice, whereby the permissible line 
length is halved.

A worked example would be

 IH = 0.25 ICN

 UH = 0.6 UC

 cos φ = 0.3 

 IH Holding current of the contactor

 ICN Rated current the contactor coil

 UH Drop-out voltage of the contactor

 UC Control voltage

 cos φ Power factor of the contactor coil (on-state)

The permissible cable capacitance is calculated at 50 Hz approximately to be

 CZ ≈ 500 · SH/UC
2 [μF]

 CZ Permissible cable capacitance [μF]

 SH Holding power at UC [VA]

 UC Control voltage [V]
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At a typical cable capacitance of 0.3 μF/km the permissible line length for maintained contact control is

 

With momentary contact control the line length is halved. Graphic presentation for the control voltages 110 V and 230 V  
see Fig. 5.3 8.

As the cable capacitance is very much dependent on the type of cable, it is recommended in case of doubt to obtain the specific 
value from the manufacturer or to measure it.

 

Fig. 5.3 8

Permissible line length in accordance with the above conditions for maintained contact control at control voltages of 110 V and 
230 V at 50 Hz

 l Line length

 S Apparent power (holding power) of the contactor

If there are problems with respect to the permissible line length because of the line capacitance the following measures are 
possible in accordance with above discussion:

	 •	 Application	of	an	additional	load	(resistor	parallel	to	contactor	coil)

	 •	 Use	of	a	larger	contactor	with	bigger	holding	power

	 •	 Use	of	a	lower	control	voltage

	 •	 Use	of	direct	voltage

5.3.5 Contact reliability
Electronic devices and circuits as commonly used in industrial applications, for example in PLC control devices and safety relays 
put high demands on the functional reliability of the controlling contacts, whether auxiliary switches of power switchgear or for 
example contacts of control units, sensors, function relays etc. The voltage to be switched is usually 24 V or even lower and the 
switching currents remain in the low mA range. Contacts connected in series (for example to safety relays) are frequently de-
energised when they close and open, so that a switching operation under electrical load never takes place.
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Fig. 5.3 9

Operational range of PLC inputs in accordance with IEC 61131-2 (Programable controllers – Part 2: Equipment requirements and tests) 
and IEC 60947-1 Annex S (Digital inputs and outputs) for contact-inputs (digital input type 1) at a rated control voltage of 24 V. The 
contact load for ON can be between 30 and 15 V and 15 and 2 mA. 
Copyright © IEC, Geneva, Switzerland. www.iec.ch

While at switching higher voltages and loads, a cleaning process by the arc takes place with every switching operation, with small 
signals special measures are required to ensure a high quality of contact making, that is to guarantee a high degree of contact 
reliability. At a typical PLC input resistance of several kΩ it is not a matter of mΩ as in power contacts. Good contact making can be for 
example prevented by

	 •	 Films	on	the	contact	surfaces,	originating	from	reactions	with	ambient	gases	(for	example	oxidation,	formation	of	 
  sulphide layers) or from deposits of volatile components of the ambient atmosphere (e.g. that originate from    
  production processes at the location or effluvia from plastics in the switchboard cabinet). Such films can usually only be   
  identified with special devices and the cause is often hard to determine and eliminate.

	 •	 Films	on	the	contact	surface	that	are	caused	by	migration	of	metal	material	from	the	contact	base	and	often	interact		 	
  with the first point and the switching operation.

	 •	 Contamination	of	the	contact	surface	that	can	emanate	from	the	environment	(open	switching	cabinet	doors	during		 	
  commissioning!), from the interior of the switching cabinet or from the device itself. A problem that should not be   
  neglected is the generation of foreign particles by the operation of the devices itself, for example due to abrasion.

Provisions for ensuring good contact reliability include

	 •	 Selection	of	suitable	contact	materials	(basic	material	and	possibly	surface	coatings	such	as	gold)

	 •	 Avoidance	of	internal	sources	(for	example	materials	and/or	abrasion)	that	could	have	an	adverse	effect	on	 
  contact reliability.

	 •	 Use	of	high	contact	pressures	that	are	able	to	break	through	tarnishing	films,	e.g.	by	appropriate	shape	of	the	 
  contact surface.

	 •	 Relative	movement	of	the	contact	surfaces	during	circuit	making	that	break	through	tarnishing	layers	and	can	 
  remove  contamination. It should be noted that this can cause abrasion, which may have a negative effect on life  
  span and possibly contact reliability .

	 •	 Use	of	multiple	contacts	(double	contacts,	H-contacts),	with	which	the	likelihood	of	good	contact	making	is	 
  increased by parallel connection of the contact points.

	 •	 Avoidance	of	too	low	contact	loading	and	of	series	connection	of	a	bigger	number	of	contacts.

	 •	 Avoidance	of	interfering	external	influences	(foreign	particles,	chemical	effects)	at	the	site	of	installation.

 

0,5 mA 2 mA 15 mA
U L min.

U L max.

I L max.

U L max. or U T min.

U H min. or U T max.

I H min.

I H max.

U H max.

0

-3 V

5 V

15 V

24 V

30 V

I T min. I T max.

Ue min.

Ue max.

Ue 

U  [V]

On region

Off region

I   mA

Fig. 5.3-9
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Fig. 5.3 10

Double contacts, increased contact pressure (for example by riffling of the contact surface) and gold-plating are some of the possible 
approaches to obtain good contact reliability

The attainment of satisfactory contact and hence functional reliability requires appropriate measures by the device manufacturer and 
the user. On the user side, the selection of a suitable contact design for the respective application from the manufacturer’s product 
range, compliance with manufacturer specifications and the measures listed above will have a beneficial effect on contact reliability. 
Care is required with all kinds of chemical substances in the switching cabinet. Thus while contact sprays may be good for oxidised 
sockets – for switching contacts they are poison!

Universal control contacts can be used over a wide range of voltages and powers. They are suitable both for switching contactor 
coils at 230 V or 110 V and for control of PLC’s at 24 V. To achieve a high degree of contact reliability, contacts should normally not be 
connected in series at the small control voltages as common with PLC control. With contacts that are specially designed for low signal 
levels it should be noted that even single switching operations at higher power levels can destroy the surface structures and hence 
the electronic-compatibility will completely be lost or at least strongly reduced.

  

Fig. 5.3 11 

Typical contact reliability values at 15 V/5 mA of universal control contacts and special low-level control contacts
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Special low-level control 
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6 Considerations when building control systems  
 and  switchgear assemblies
6.1 Temperature rise
The temperature of the devices in the switchboard cabinet and that of touchable parts are important factors with respect to 
operational reliability, life span and personal safety. It depends among other things on the ambient temperature of the switchgear 
assembly, the heat flow via enclosures, if any, and/or air conditioning, the method of installation of devices  
(mutual heating, heat abduction, formation of hotspots), wiring (heat-flow via conductors ) and last but not least the dissipated 
heat (load losses) of the devices.

6.1.1 Temperature rise limit values
The relevant standards such as IEC 60947-1 (low-voltage switchgear) and IEC 60439-1 

(Low-voltage switchgear assemblies) define upper limits for the temperatures of the relevant constructive parts. IEC 60204 (Safety 
of machinery - Electrical equipment of machines) refers to IEC 60439-1.

Tab. 6.1 1

Temperature-rise limit values in accordance with IEC 60947 and IEC 60439

Copyright © IEC, Geneva, Switzerland. www.iec.ch

The permissible temperature-rises or temperatures appear in some cases to be high, for example those for the temperature-rise of 
terminals. This limit value is based on the connection of conductor material with a permissible continuous insulation temperature 
of 70 °C. The high temperature of the connection point itself is permissible as after only a short distance, the conductor 
temperature starts to decrease due to the heat flow from the terminal point via the connected line. The conductor material (cable, 
busbar etc) acts as a thermal aerial assisting in the heat dissipation process. Experience gained over many decades and with 
billions of terminal points confirms the correct choice of the limit values.

 
Part

 
Temperature-rise limits 1)

Reference (ambient) 
temperature

Temperature-limit 
(absolute) 1)

Metallic manual  
operating means 

15 … 25 K 40 °C 55 … 65 °C

Non-metallic manual operating 
means

25 … 35 K 40 °C 65 … 75 °C

Metallic parts intended to be 
touched but not hand-held

30 … 40 K 40 °C 70 … 80 °C

Non-metallic parts intended to 
be touched but not hand-held

40 … 50 K 40 °C 80 … 90 °C

Metallic surfaces not intended 
to be touched

40 … 50 K 40 °C 80 … 90 °C

Non-metallic surfaces not 
intended to be touched

50 … 60 K 40 °C 90 … 100 °C

Terminals for external 
connections 

(Cu silver- or nickel-plated)

70 … 80 K 40 °C 110 … 120 °C

1) The higher values apply for used devices and for parts which are not intended to be touched or operated frequently 
respectively.
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 Fig. 6.1 1

Typical decrease in conductor temperature with increasing distance from the terminal

Decisive for the functional reliability of devices, their life span or the risk of accidents, is not the temperature-rise but the absolute 
temperature. The standards define temperature-rise limits for practical reasons so that tests can be performed in a laboratory 
environment. The reference ambient temperature in accordance with standards is 35 °C as an average over 24 hours with a maximum 
value of 40 °C. If the ambient temperature around the devices exceeds these values in actual service – for example because they are 
installed in a switching cabinet – then their load must be reduced correspondingly so that the permissible absolute temperature 
values are observed. This especially affects the temperatures of internal parts of devices in respect of the thermal stability of the 
materials used. For reduction factors, see manufacturers documentation.

 

Fig. 6.1 2

The normal temperature range for devices in accordance with IEC 60947 is identical with the normal temperature range for switchgear 
assemblies in accordance with IEC 60439, in which the devices are installed.

6.1.2 Laboratory test conditions and real practical environment
The temperature-rise test of low-voltage devices and hence the determination of their permissible thermal loads is performed in 
accordance with standards under precisely defined conditions. This is important to obtain comparable measurement results.

The test conditions are:

	 •	 Set-up	of	device	to	be	tested	in	open	air

	 •	 Measurement	of	the	ambient	temperature	at	1	m	horizontal	distance

	 •	 Connections	to	the	current	source	and	between	the	terminals	with	defined	conductor	cross	sections	 
  (depending on the rated current)

	 •	 Connections	to	the	current	source	and	between	the	terminals	with	a	minimum	length	of	1	m	up	to	cross	section	 
  35 mm2, at bigger cross sections 2 m and over 800 A rated current 3 m.
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The real application conditions often differ from test conditions. Devices are usually closely mounted next to each other and 
connected with short conductors. Often the conductors of several circuits are routed closely together so that they compound 
the heating effect. In addition the devices are usually installed in a housing, the interior of which reaches temperature above the 
external ambient. It should be noted that the normal ambient temperature range for the devices is identical with the normal 
ambient temperature range for switchgear assemblies.

 

Fig. 6.1 3

The practical conditions with respect to the connections (example on right) differ considerably from the arrangements at type 
testing.

It is the responsibility of the manufacturer of a switchgear assembly or of a control system to ensure that the prescribed 
temperature limits are respected under practical conditions. Special attention should be paid to devices that are operated close 
to the thermal continuous current, in particular to circuit breakers and thermal overload relays. At utilisation categories such 
as AC 3 and AC 4, where the switching capacity of the devices is the most significant selection consideration, heating by the 
continuous operational current is usually less critical.

6.1.3 Verification of temperature-rise
For control systems and switchgear assemblies, verification of temperature-rise is generally required. This can be based on 
measurements (for example with series-produced devices and systems and modular equipment), or on calculation, or be 
derived from measured systems. For calculating the temperature-rise of switchgear assemblies, IEC 60890 provides a method 
that is relatively straightforward for determining the over-temperature in an enclosure if the heat dissipation inside is known. In 
addition some conditions must be fulfilled, for example a largely uniform distribution of heat sources in the cabinet.

Rockwell Automation has created a very useful tool for calculating the temperature-rise in enclosures and switching cabinets in 
the form of TRCS (Temperature Rise Calculation Soft-ware) based on IEC 60890. TRCS also enables very efficient determination of 
heat dissipation by components and conductors in the assembly on the basis of their operational data. Experience shows that 
the contribution of conductors to temperature-rise is significant (up to 50 %), if they are operated close to the rated current and 
hence to the rated insulation temperature (for example 70 °C).

6.1.4 Important aspects regarding device temperature rise;  
 Recommendations
6.1.4.1 Rated current
For many low-voltage components (for example circuit breakers, load switches, contactors, fuses, conductors), ohmic losses are 
the main sources of losses. They are proportional to the square of the operational current. The r.m.s. value is definitive. Under 
variable load conditions (for example intermittent operation) the r.m.s. value can be averaged over time, if the cycle time is 
shorter that the heating time constants of devices. In the power range up to around 40 A the permissible integration time  
(= cycle time) is around 15 … 20 minutes.
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Fig. 6.1 4

Example of calculation of the effective value for intermittent operation of a motor.

 

t1 Starting time at starting current I1

t2 Service period at operating current I2

t3 Interval time at current I3=0

t1+ t2+ t3 Cycle time

As the operating conditions often deviate from those for determining the conventional thermal current in the open air Ith (see 
above), as a general rule of thumb it is recommended not to operate devices at over 80 % Ith. At 80 % current, the current-based heat 
losses (ohmic losses) are reduced to around 64 %.

6.1.4.2 Thermal protective devices
In protective devices such as circuit breakers or motor protection relays with narrow adjustment ranges, the 80 % recommendation 
can not always be observed as the devices must be set to the rated current of the load to be protected and often the overlap of the 
current ranges is insufficient. As far as possible, a current range should be selected that enables for a setting and hence operation, in 
the low to medium range of the scale.

For bimetallic protective devices it should be noted that the heat generated in the bimetal strips required to provide for the quality 
of protection is roughly the same for all current ranges of a frame size. A 1 A bimetal relay at 1 A generates approximately the same 
heat as a 10 A bimetal relay of the same size at 10 A.

6.1.4.3 Conductor cross sections
A substantial quantity of heat is removed from the devices via the connected conductors. The larger the cross section the better is 
the cooling effect.

During the manufacturer’s temperature-rise tests, attention is paid to compliance with the temperature-rise limits as of  
Tab. 6.1 1, the temperature rise of internal components used within the devices and their compatibility with the materials 
used. At increased ambient temperature, for example when the devices are installed in cases or cabinets, larger cross sections of  
connecting conductors are required than those used in the type tests and those corresponding to the regular installation tables, 
which are based on an ambient temperature of 30 °C. In practice, selection of a conductor that is ”one size up” in cross-section is 
recommended. This also has the advantage that the heat dissipation in the switching cabinet and the energy consumption of the 
installation are reduced because of the lower current density in the conductor. If necessary, two conductors can be run in parallel.

With bimetal relays and circuit breakers with bimetallic tripping mechanisms, the cross section of the connected conductor affects 
the ultimate tripping current. Typically, a larger wire cross section can, depending on the temperature compensation of the bimetal 
strips, lead in practice to an increase of the ultimate tripping current by up to 5 %. From this point of view it is advantageous, rather 
than choosing the device with the highest current range of a frame size of bimetal relay or circuit breaker, to choose the next largest 
frame size.

The selection of conductors with a higher insulation class does not affect the rate of heat-flow out of the devices. For this reason, 
their cross-section should be the same as those of conductors with a 70 °C limiting temperature.

In the case of busbars it should be noted that, for the same reasons, the load capacity of busbars that are connected to devices is 
lower than the load capacity of busbars that are exclusively serving for power distribution. The corresponding tables can be found in 
the annex to IEC 60890.
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6.1.4.4 Conductor length
As shown in Section 6.1.2 in the type tests for devices comparatively long connecting lines to the terminals are used and these 
help to radiate a substantial amount of heat from the devices. With short connections this does not occur. As a consequence the 
temperatures of the terminals, the device interiors and the conductors themselves rise even if the load remains unchanged. For 
this reason, with compact device assemblies such as for example motor starters consisting of a circuit breaker and a contactor, 
type tests of the complete starter including the connecting (power wiring) components are performed. The power wiring 
modules have a higher temperature withstand than normal wiring material and the tests ensure that the temperature-rise limits 
for all the components are observed.

 

Fig. 6.1 5

With compact motor starters with power wiring modules, the type test ensures that the limit temperatures of all components are 
observed.

With short connections in individually wired installations, compliance with the temperature limits should be ensured by load 
reduction and/or forced cooling. The selection of larger connecting cross-sections increases the heat exchange of mutually 
connected devices and reduces the amount of heat dissipation in the conductor itself. Therefore the rate of heat-flow to the 
outside is not improved.

6.1.4.5 Tightening torques
In the catalogues and on the devices themselves, often ranges for the tightening torques of the terminals are stated. These then 
relate to all current ranges and the respective wire sizes for a frame size. From the point of view of device heating it is a good 
idea to always use a value in the upper part of the torque range as this will have a positive effect on the electrical and thermal 
transition resistance and hence the heat generation and flow. See Fig. 6.1 6. The upper range limit should not be exceeded so 
that the mechanical strength of the terminals is not unacceptably stressed.

6.1.4.6 Line ducting
As can be seen from the relevant tables (see also RALVET) for conductor selection, the method of installation (in the open, on 
tracks, in cable ducts etc.) and the accumulation of conductors have a large influence on their load-carrying capacity. The more 
heat-flow to the surrounding air is prevented, the lower is the load capacity or, in other words, the greater is the required cross-
section for a given current. For technical reasons therefore, the lines should be laid as loosely as possible. Lines that are routed 
into a cable duct only a short distance from the connection terminal have a relative short open length over which heat can be 
dissipated and they mutually heat each other in the duct.

6.1.4.7 Operating frequency and harmonics
All normal technical data and tests relate to the normal supply frequency of 50/60 Hz. At higher frequencies additional losses 
occur that adversely affect the loss balance or reduce the load capacity of the devices. See Section 2.4.3.

6.1.4.8 Mounting devices side-by-side
In real-life switchgear assemblies, the switchgear devices are very often placed in rows side-by-side. Circulation of the ambient air 
between the devices is then not possible and as a consequence the rate of cooling of devices in comparison to the standard test 
conditions is reduced (see Fig. 6.1 5). Where this results in an inadmissible temperature rise, then a reduction in load capacity will 
occur.
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In practice, adjacent devices are frequently not loaded at the same time or the devices are operated with currents that are well 
below the conventional thermal current in open air (Ith). In such cases, adjacent placement of devices is permissible with respect to 
temperature-rise.

Care is required when operating adjacent devices close to the Ith and in case of a combination of adverse factors with respect to the 
heating as described above. In such cases, spacing between the devices is recommended in order to reduce mutual heating. Often 
instructions are included in the manufacturer’s information – for example with the dimensional drawings (catalogue, packaging, 
application recommendations). To avoid hotspots, circulation of the air in switchgear assemblies is advantageous.

6.1.4.9 Mounting position
In manufacturers documentation there are specifications with respect to the permissible mounting positions and in the case of 
installations differing from the normal positions the corresponding influence on the operational parameters. With respect to heating 
effects it should also be remembered that heat dissipation within the devices is not evenly distributed, but is concentrated on specific 
components, for example, the bimetal strips of circuit breakers or motor protection relays. With a mounting position that differs from 
normal, the mutual effect on adjacent devices can also change.

6.1.5 Thermal imaging cameras
Thermal imaging cameras are increasingly being used to examine heat formation in switchgear assemblies. They are a very useful 
tool for recognising critical spots, but there is also a certain risk of incorrect interpretation of measurements. Thus an apparently 
high measured surface temperature can be caused by radiation from hot internal components, although in fact – for example when 
measured with thermocouples – the hot-spot is actually below the surface. Incorrect measurements are possible due to the different 
emission factors of the various materials used. It is a good idea to get the advice of a competent specialist if apparently excessive high 
temperatures are measured.

 

Fig. 6.1 6

Picture of a device made with a thermal imaging camera. Effect of the tightening torque on terminal heating. The various temperatures 
are represented with colours. At interpretation the emission factors of the various surfaces should be considered.

With thermal imaging cameras, the temperatures of the visible surfaces can be measured. Overheating on the inside of a device 
can manifest itself in the increased temperature of a visible surface. Thus a worn out main contact can show-up through an increase 
in visible surface-temperature on the associated terminal. However, by far the most common explanation of unexpectedly high 
temperature on a terminal is a loose connection.

It is useful to perform temperature-rise measurements at long intervals in order to determine changes and establish whether these 
changes are due to the devices, connections or with respect to some variation in their load.
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6.2 Short-circuit withstand capacity
In accordance with IEC 60439-1 verification of the short-circuit withstand capacity of a switch-gear assembly is mandatory from a 
prospective short-circuit current of 10 kAeff or 17 kApk (peak value) upwards. Below these limit values the withstand capacity is not 
stated, as the stress generated by the forces is not regarded as critical.

For auxiliary circuits that are connected to control transformers, the limits of 10 kVA at ≥ 110 V and 1.6 kVA at < 110 V at a minimum 
short-circuit voltage of 4 % apply. Below these values verification of the short-circuit withstand capacity is not required.

It is important to note that verification of the short-circuit withstand capacity is not required for components, where the short-circuit 
withstand capacity for the conditions under which they are used in the relevant switchgear assembly has been verified by type testing. 
Examples of these are: busbars, busbar supports, connections to bus-bars, input and output units, switchgear etc. In practice, this 
means that type-tested devices or subassemblies (for example contactors, motor starters, motor protective devices, bus-bar systems) 
can be used without further verification of their short-circuit withstand capacity, insofar as their type test includes loading in the given 
switchgear assembly.

If, for example, for a two-component motor starter consisting of a circuit breaker with motor protection characteristic and a contactor, 
there is a coordination table available for 400 V at a conditional rated short-circuit current Iq = 50 kA, then starters from this table 
can be used for all applications with Iq ≤ 50 kA without further verification of the short-circuit withstand capacity. Manufacturer 
instructions, where they exist, must be observed.
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AUTOMATION SERVICES & TRAINING

To meet today’s more demanding production 
and business goals, companies can no longer 
take a ‘piece meal’ approach to maintaining 
production assets. Instead, it is necessary to 
use a strategic approach to maintenance, 
one that includes a comprehensive plan that 
identifies issues, needs and objectives and 
coordinates functions within your organisation. 

The right maintenance strategy will help 
optimise the performance and utilisation of 
your automation assets throughout their life 
cycle – helping reduce downtime, improve 
operation to spec, reduce speed to change, 
and ultimately, improving your financial 
stability (both through lower maintenance 
costs and increased productivity).

NHP offers a comprehensive portfolio of 
Automation Services and Training services to 
not only maintain the physical assets of your 
plant, but also to train your staff and provide 
supplemental automation professionals to 
augment your internal resources.

Our services can be purchased from NHP on a 
needs basis or through annual agreements.

Asset management

- Repair and exchange parts

- Spare parts management

- On-site asset management

Training

- Instructor led

- Self paced

- Customised on-site

- Work stations

Onsite support

- Emergency breakdown

- Preventative maintenance

- Drive start-up

remote support

- TechConnect support 
agreements

-  Remote monitoring and 
diagnostics

network design  
and evaluation Assessment

- Installed base evaluations

- Integrated performance 
analysis

- Plant baseline evaluation

Condition monitoring

- Vibration analysis

- Reliability audits

AUTOMATION SERVICES & TRAINING
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